Page 5 of 5 FirstFirst 12345
Results 61 to 68 of 68
http://idgs.in/309524
  1. #61
    [eX]HoaM's Avatar
    Join Date
    May 2009
    Posts
    112
    Points
    212.60
    Thanks: 3 / 0 / 0

    Default

    Spoiler untuk Jawaban event I tanggal 26-08-2010 :

    Spoiler untuk Jawaban No 1 :

    Radiasi elektromagnetik

    Radiasi elektromagnetik mengambil bentuk gelombang yang menyebar dalam udara kosong atau dalam materi. Radiasi EM memiliki komponen medan listrik dan magnetik yang berosilasi pada fase saling tegak lurus dan ke arah propagasi energi. Radiasi elektromagnetik diklasifikasikan ke dalam jenis menurut frekuensi gelombang, jenis ini termasuk (dalam rangka peningkatan frekuensi): gelombang radio, gelombang mikro, radiasi terahertz, radiasi inframerah, cahaya yang terlihat, radiasi ultraviolet, sinar-X dan sinar gamma. Dari jumlah tersebut, gelombang radio memiliki panjang gelombang terpanjang dan sinar gamma memiliki terpendek. Sebuah jendela kecil frekuensi, yang disebut spektrum yang dapat dilihat atau cahaya, yang dilihat dengan mata berbagai organisme, dengan variasi batas spektrum sempit ini. EM radiasi membawa energi dan momentum, yang dapat disampaikan ketika berinteraksi dengan materi.


    Jenis-Jenis Radiasi elektromagnetik berdasarkan frekuensi gelombangnya:
    Spoiler untuk Gelombang radio :

    Gelombang radio adalah satu bentuk dari radiasi elektromagnetik, dan terbentuk ketika objek bermuatan listrik dimodulasi (dinaikkan frekuensinya) pada frekuensi yang terdapat dalam frekuensi gelombang radio (RF) dalam suatu spektrum elektromagnetik, dan radiasi elektromagnetiknya bergerak dengan cara osilasi elektrik maupun magnetik.

    Gelombang elektromagnetik lainnya, yang memiliki frekuensi di atas gelombang radio meliputi sinar gamma, sinar-X, inframerah, ultraviolet, dan cahaya terlihat.

    Ketika gelombang radio dipancarkan melalui kabel, osilasi dari medan listrik dan magnetik tersebut dinyatakan dalam bentuk arus bolak-balik dan voltase di dalam kabel. Hal ini kemudian dapat diubah menjadi signal audio atau lainnya yang membawa informasi.

    Undang-undang Nomor 32 Tahun 2002 Tentang Penyiaran menyebutkan bahwa frekuensi radio merupakan gelombang elektromagnetik yang dipergunakan untuk penyiaran dan merambat di udara serta ruang angkasa tanpa sarana penghantar buatan, merupakan ranah publik dan sumber daya alam terbatas. Seperti spektrum elektromagnetik yang lain, gelombang radio merambat dengan kecepatan 300.000 kilometer per detik Perlu diperhatikan bahwa gelombang radio berbeda dengan gelombang audio.

    Gelombang radio merambat pada frekuensi 100,000 Hz sampai 100,000,000,000 Hz, sementara gelombang audio merambat pada frekuensi 20 Hz sampai 20,000 Hz. Pada siaran radio, gelombang audio tidak ditransmisikan langsung melainkan ditumpangkan pada gelombang radio yang akan merambat melalui ruang angkasa. Ada dua metode transmisi gelombang audio, yaitu melalui modulasi amplitudo (AM) dan modulasi frekuensi (FM).

    Meskipun kata 'radio' digunakan untuk hal-hal yang berkaitan dengan alat penerima gelombang suara, namun transmisi gelombangnya dipakai sebagai dasar gelombang pada televisi, radio, radar, dan telepon genggam pada umumnya.


    Spoiler untuk Gelombang mikro :

    Gelombang mikro atau Mikrogelombang (microwave) adalah gelombang elektromagnetik dengan frekuensi super tinggi (Super High Frequency, SHF), yaitu di atas 3 GHz (3x109 Hz).

    Jika gelombang mikro diserap oleh sebuah benda, akan muncul efek pemanasan pada benda tersebut. Jika makanan menyerap radiasi gelombang mikro, makanan menjadi panas dan masak dalam waktu singkat. Proses inilah yang dimanfaatkan dalam oven microwave.

    Gelombang mikro juga dimanfaatkan pada RADAR (Radio Detection and Ranging). RADAR digunakan untuk mencari dan menentukan jejak suatu benda dengan gelombang mikro dengan frekuensi sekitar 1010 Hz.

    (Menara telekomunikasi gelombang mikro)

    Spoiler untuk Inframerah :

    Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti "bawah merah" (dari bahasa Latin infra, "bawah"), merah merupakan warna dari cahaya tampak dengan gelombang terpanjang. Radiasi inframerah memiliki jangkauan tiga "order" dan memiliki panjang gelombang antara 700 nm dan 1 mm. Inframerah ditemukan secara tidak sengaja oleh Sir William Herschell, astronom kerajaan Inggris ketika ia sedang mengadakan penelitian mencari bahan penyaring optik yang akan digunakan untuk mengurangi kecerahan gambar matahari dalam tata surya teleskop.

    (Gambar dari seekor ****** kecil diambil dalam cahaya inframerah-tengah (warna salah))
    Spoiler untuk Karakteristik :

    * tidak dapat dilihat oleh manusia
    * tidak dapat menembus materi yang tidak tembus pandang
    * dapat ditimbulkan oleh komponen yang menghasilkan panas
    * Panjang gelombang pada inframerah memiliki hubungan yang berlawanan atau berbanding terbalik dengan suhu. Ketika suhu mengalami kenaikan, maka panjang gelombang mengalami penurunan.

    Spoiler untuk Jenis-jenis inframerah berdasarkan panjang gelombang :

    * Inframerah jarak dekat dengan panjang gelombang 0.75 – 1.5 µm
    * Inframerah jarak menengah dengan panjang gelombang 1.50 – 10 µm
    * Inframerah jarak jauh dengan panjang gelombang 10 – 100 µm

    Spoiler untuk Kegunaan Inframerah dalam kehidupan :

    Kesehatan
    * Mengaktifkan molekul air dalam tubuh. Hal ini disebabkan karena inframerah mempunyai getaran yang sama dengan molekul air. Sehingga, ketika molekul tersebut pecah maka akan terbentuk molekul tunggalyang dapat meningkatkan cairan tubuh.
    * Meningkatkan sirkulasi mikro. Bergetarnya molekul air dan pengaruh inframerah akan menghasilkan panas yang menyebabkan pembuluh kapiler membesar, dan meningkatkan temperatur kulit, memperbaiki sirkulasi darah dan mengurani tekanan jantung.
    * Meningkatkan metabolisme tubuh. jika sirkulasi mikro dalam tubuh meningkat, racun dapat dibuang dari tubuh kita melalui metabolisme. Hal ini dapat mengurangi beban liver dan ginjal.
    * Mengembangkan Ph dalam tubuh. Sinar inframerah dapat membersihkan darah, memperbaiki tekstur kulit dan mencegah rematik karena asam urat yang tinggi.
    * Inframerah jarak jauh banyak digunakan pada alat-alat kesehatan. Pancaran panas yang berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai informasi kondisi kesehatan organ tersebut. Hal ini sangat bermanfaat bagi dokter dalam diagnosis kondisi pasien sehingga ia dapat membuat keputusan tindakan yang sesuai dengan kondisi pasien tersebut. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar. Contoh penggunaan inframerah yang menjadi trend saat ini adalah adanya gelang kesehatan Bio Fir. Dengan memanfaatkan inframerah jarak jauh, gelang tersebut dapat berperang dalam pembersihan dalam tubuh dan pembasmian kuman atau bakteri.

    Bidang komunikasi

    * Adanya sistem sensor infra merah. Sistem sensor ini pada dasarnya menggunakan inframerah sebagai media komunikasi yang menghubungkan antara dua perangkat. Penerapan sistem sensor infra ini sangat bermanfaat sebagai pengendali jarak jauh, alarm keamanan, dan otomatisasi pada sistem. Adapun pemancar pada sistem ini terdiri atas sebuah LED (Lightemitting Diode)infra merah yang telah dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar inframerah, sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau modulasi]] infra merah yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
    * Adanya kamera tembus pandang yang memanfaatkan sinar inframerah. Sinar inframerah memang tidak dapat ditangkap oleh mata telanjang manusia, namun sinar inframerah tersebut dapat ditangkap oleh kamera digital atau video handycam. Dengan adanya suatu teknologi yang berupa filter iR PF yang berfungi sebagai penerus cahaya infra merah, maka kemampuan kamera atau video tersebut menjadi meningkat. Teknologi ini juga telah diaplikasikan ke kamera handphone
    * Untuk pencitraan pandangan seperti nightscoop
    * Inframerah digunakan untuk komunikasi jarak dekat, seperti pada remote TV. Gelombang inframerah itu mudah untuk dibuat, harganya relatif murah, tidak dapat menembus tembok atau benda gelap, serta memiliki fluktuasi daya tinggi dan dapat diinterfensi oleh cahaya matahari.
    * Sebagai alat komunikasi pengontrol jarak jauh. Inframerah dapat bekerja dengan jarak yang tidak terlalu jauh (kurang lebih 10 meter dan tidak ada penghalang)
    * Sebagai salah satu standardisasi komunikasi tanpa kabel. Jadi, inframerah dapat dikatakan sebagai salah satu konektivitas yang berupa perangkat nirkabel yang digunakan untuk mengubungkan atau transfer data dari suatu perangkat ke parangkat lain. Penggunaan inframerah yang seperti ini dapat kita lihat pada handphone dan laptop yang memiliki aplikasi inframerah. Ketika kita ingin mengirim file ke handphone, maka bagian infra harus dihadapkan dengan modul infra merah pada PC. Selama proses pengiriman berlangsung, tidak boleh ada benda lain yang menghalangi. Fungsi inframerah pada handphone dan laptop dijalankan melalui teknologi IrDA (Infra red Data Acquition). IrDA dibentuk dengan tujuan untuk mengembangkan sistem komunikasi via inframerah.

    Kelebihan inframerah dalam pengiriman data

    * Pengiriman data dengan infra merah dapat dilakukan kapan saja, karena pengiriman dengan inframerah tidak membutuhkan sinyal.
    * Pengiriman data dengan infra merah dapat dikatakan mudah karena termasuk alat yang sederhana.
    * Pengiriman data dari ponsel tidak memakan biaya (gratis)

    Kelemahan inframerah dalam pengiriman data

    * Pada pengiriman data dengan inframerah, kedua lubang infra merah harus berhadapan satu sama lain. Hal ini agak menyulitkan kita dalam mentransfer data karena caranya yang merepotkan.
    * Inframerah sangat berbahaya bagi mata, sehingga jangan sekalipun sorotan infra merah mengenai mata
    * Pengiriman data dengan inframerah dapat dikatakan lebih lambat dibandingkan dengan rekannya Bluetooth.

    Bidang keruangan
    Inframerah yang dipancarakan dalam bentuk sinar infra merah terhadap suatu objek, dapat menghasilkan foto infra merah. Foto inframerah yang bekerja berdasarkan pancaran panas suatu objek dapat digunakan untuk membuat lukisan panas dari suatu daerah atau objek. Hasil lukisan panas dapat menggambarkan daerah mana yang panas dan tidak. Suatu lukisan panas dari suatu gedung dapat digunakan untuk mengetahui dari zona bagian mana dari gedung itu yang menghasilkan panas berlebihann sehingga dapat dilakukan perbaikan-perbaikan yang diperlukan.
    Bidang Industri

    * Lampu inframerah. Merupakan lampu pijar yang kawat pijarnya bersuhu di atas ±2500°K. hal ini menyebabkan sinar infra merah yang dipancarkannya menjadi lebih banyak daripada lampu pijar bisa. Lampu infra merah ini biasanya digunakan untuk melakukan proses pemanasan di bidang industri.
    * Pemanasan inframerah. Merupakan suatu kondisi ketika energi inframerah menyerang sebuah objek dengan kekuatan energi elektromagnetik yang dipancarkan di atas -273 °C (0°K dalam suhu mutlak). Pemanasan inframerah banyak digunakan pada alat-alat seperti, pemanggang danbola lampu (90% panas – 10% cahaya)


    Spoiler untuk Spektrum optik :

    Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm (atau dalam frekuensi 790-400 terahertz). Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah hijau dari spektrum optik. Warna pencampuran seperti pink atau ungu, tidak terdapat dalam spektrum ini karena warna-warna tersebut hanya akan didapatkan dengan mencampurkan beberapa panjang gelombang.

    Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi hampir tanpa mengalami pengurangan intensitas atau sangat sedikit sekali (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan menggapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer. Dikatakan jendela optik karena manusia tidak bisa menjangkau wilayah di luar spektrum optik. Inframerah terletak sedikit di luar jendela optik, namun tidak dapat dilihat oleh mata manusia.


    Banyak spesies yang dapat melihat panjang gelombang di luar jendela optik. Lebah dan serangga lainnya dapat melihat cahaya ultraviolet, yang membantu mereka mencari nektar di bunga. Spesies tanaman bergantung pada penyerbukan yang dilakukan oleh serangga sehingga yang berkontribusi besar pada keberhasilan reproduksi mereka adalah keberadaan cahaya ultraviolet, bukan warna yang bunga perlihatkan kepada manusia. Burung juga dapat melihat ultraviolet (300-400 nm).
    Spoiler untuk Warna-warna di dalam spektrum :

    Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :
    ungu (380-450 nm)
    biru (450-495 nm)
    hijau (495-570 nm)
    kuning (570-590 nm)
    jingga (590-620 nm)
    merah (620-750 nm)


    Spoiler untuk Ultraungu :

    Radiasi ultraungu (sering disingkat UV, dari bahasa Inggris: ultraviolet) adalah radiasi elektromagnetis terhadap panjang gelombang yang lebih pendek dari daerah dengan sinar tampak, namun lebih panjang dari sinar-X yang kecil.

    Radiasi UV dapat dibagi menjadi hampir UV (panjang gelombang: 380–200 nm) dan UV vakum (200–10 nm). Dalam pembicaraan mengenai pengaruh radiasi UV terhadap kesehatan manusia dan lingkungan, jarak panjang gelombang sering dibagi lagi kepada UVA (380–315 nm), yang juga disebut "Gelombang Panjang" atau "blacklight"; UVB (315–280 nm), yang juga disebut "Gelombang Medium" (Medium Wave); dan UVC (280-10 nm), juga disebut "Gelombang Pendek" (Short Wave).

    Istilah ultraviolet berarti "melebihi ungu" (dari bahasa Latin ultra, "melebihi"), sedangkan kata ungu merupakan warna panjang gelombang paling pendek dari cahaya dari sinar tampak. Beberapa hewan, termasuk burung, reptil, dan serangga seperti lebah dapat melihat hingga mencapai "hampir UV". Banyak buah-buahan, bunga dan benih terlihat lebih jelas di latar belakang dalam panjang gelombang UV dibandingkan dengan penglihatan warna manusia.

    (Korona matahari terlihat dengan sinar ultraungu)

    Spoiler untuk Sinar-X :

    Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 picometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medikal dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.

    (Sebuah foto sinar-X (radiograf) diambil oleh Röntgen)

    Spoiler untuk Sinar gama :

    Sinar gama (seringkali dinotasikan dengan huruf Yunani gama, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.

    Sinar gama membentuk spektrum elektromagnetik energi-tertinggi. Mereka seringkali didefinisikan bermulai dari energi 10 keV/ 2,42 EHz/ 124 pm, meskipun radiasi elektromagnetik dari sekitar 10 keV sampai beberapa ratus keV juga dapat menunjuk kepada sinar X keras. Penting untuk diingat bahwa tidak ada perbedaan fisikal antara sinar gama dan sinar X dari energi yang sama -- mereka adalah dua nama untuk radiasi elektromagnetik yang sama, sama seperti sinar matahari dan sinar bulan adalah dua nama untuk cahaya tampak. Namun, gama dibedakan dengan sinar X oleh asal mereka. Sinar gama adalah istilah untuk radiasi elektromagnetik energi-tinggi yang diproduksi oleh transisi energi karena percepatan elektron. Karena beberapa transisi elektron memungkinkan untuk memiliki energi lebih tinggi dari beberapa transisi nuklir, ada penindihan antara apa yang kita sebut sinar gama energi rendah dan sinar-X energi tinggi.

    Sinar gama merupakan sebuah bentuk radiasi mengionisasi; mereka lebih menembus dari radiasi alfa atau beta (keduanya bukan radiasi elektromagnetik), tapi kurang mengionisasi.

    Perlindungan untuk sinar γ membutuhkan banyak massa. Bahan yang digunakan untuk perisai harus diperhitungkan bahwa sinar gama diserap lebih banyak oleh bahan dengan nomor atom tinggi dan kepadatan tinggi. Juga, semakin tinggi energi sinar gama, makin tebal perisai yang dibutuhkan. Bahan untuk menahan sinar gama biasanya diilustrasikan dengan ketebalan yang dibutuhkan untuk mengurangi intensitas dari sinar gama setengahnya. Misalnya, sinar gama yang membutuhkan 1 cm (0,4 inchi) "lead" untuk mengurangi intensitasnya sebesar 50% jujga akan mengurangi setengah intensitasnya dengan konkrit 6 cm (2,4 inchi) atau debut paketan 9 cm (3,6 inchi).

    Sinar gama dari fallout nuklir kemungkinan akan menyebabkan jumlah kematian terbesar dalam penggunaan senjata nuklir dalam sebuah perang nuklir. Sebuah perlindungan fallout yang efektif akan mengurangi terkenanya manusia 1000 kali.

    Sinar gama memang kurang mengionisasi dari sinar alfa atau beta. Namun, mengurangi bahaya terhadap manusia membutuhkan perlindungan yang lebih tebal. Mereka menghasilkan kerusakan yang mirip dengan yang disebabkan oleh sinar-X, seperti terbakar, kanker, dan mutasi genetika.

    Dalam hal ionisasi, radiasi gama berinteraksi dengan bahan melalui tiga proses utama: efek fotoelektrik, penyebaran Compton, dan produksi pasangan.

    Spoiler untuk Kesimpulan :

    Jadi walaupun Semua radiasi elektromagnetik merambat dengan kecepatan yang sama, tetapi mereka memiliki nilai frekuensi gelombang. Yang mana nilai frekuensi ini akan mengakibatkan perbedaan Panjang Gelombang. bisa disimpulkan pula gelombang radio memiliki panjang gelombang terpanjang dan sinar gamma memiliki terpendek.

    Spoiler untuk Sumber :
    http://id.wikipedia.org/wiki/


    Spoiler untuk Jawaban No 2 dan 3 :

    c=λ.F
    KET:
    c = Kecepatan cahaya (3x10^(8) m/s)
    F = Frekuensi (Hz)
    λ = Panjang gelombang (m)
    Spoiler untuk Jawaban No 2 :

    diketahui:
    λ = 564 nm = 564 x 10^(-9) m
    c = 3x10^(8) m/s
    ditanya:
    F?

    penyelesaian:
    c=λ.F ---> F=c/λ ---> F= 3x10^(8) / 564 x 10^(-9) ---> F = 5,319x10^(14) Hz = 0,5319 THz

    Spoiler untuk Kesimpulan :
    Jadi frekuensi yang dihasilkan dari Cahaya kuning dari lampu natrium mempunyai panjang gelombang =564 nm, sebesar 5,319x10^(14) Hz = 0,5319 THz


    Spoiler untuk Jawaban No 3 :

    diketahui:
    c = 3x10^(8) m/s
    F = 102.3 MHz = 102.3x10^(6) Hz
    ditanya:
    λ?

    penyelesaian:
    c=λ.F ---> λ=c/F ---> λ=3x10^(8)/102.3x10^(6) ---> λ=2,9325 m

    Spoiler untuk Kesimpulan :
    Jadi panjangan gelombang yang dihasilkan dari Sebuah Pemancar radio bekerja pada frekuensi 102.3 MHz sebesar 2,9325 m





    100 thx PANITIA
    Last edited by Anbu-LoCk~rBN; 26-08-10 at 20:58.

  2. #62
    phantom_ex's Avatar
    Join Date
    Sep 2007
    Location
    Whenever u want Whereever u want
    Posts
    15,853
    Points
    2.78
    Thanks: 557 / 850 / 667

    Default

    Soal 1 :
    Spoiler untuk radiasi elektromagnetik :
    Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.

    Gelombang elektromagnetik ditemukan oleh Heinrich Hertz. Gelombang elektromagnetik termasuk gelombang transversal.


    Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hν, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 −34 J·s — dan ν adalah frekuensi gelombang.

    Einstein kemudian memperbarui rumus ini menjadi Ephoton = hν.





    Spoiler untuk jenis-jenis radiasi Gelombang Elektromagnetik :
    Frekuensi radio
    Frekuensi radio menunjuk ke spektrum elektromagnetik di mana gelombang elektromagnetik dapat dihasilkan oleh pemberian arus bolak-balik ke sebuah antena. di atas 300 GHz, penyerapan radiasi elektromagnetik oleh atmosfer Bumi begitu besar sehingga atmosfer secara efektif menjadi "opak" ke frekuensi lebih tinggi dari radiasi elektromagnetik, sampai atmosfer menjadi transparan lagi pada yang disebut jangka frekuensi infrared dan jendela optikal.
    Band ELF, SLF, ULF, dan VLF bertumpuk dengan spektrum AF, sekitar 20–20,000 Hz. Namun, suara disalurkan oleh kompresi atmosferik dan pengembangan, dan bukan oleh energi elektromagnetik.
    Penghubung listrik didesain untuk bekerja pada frekuensi radio yang dikenal sebagai Penghubung RF. RF juga merupakan nama dari penghubung audio/video standar, yang juga disebut BNC (Bayonet Neill-Concelman).



    Radiasi Infra Merah
    Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti "bawah merah" (dari bahasa Latin infra, "bawah"), merah merupakan warna dari cahaya tampak dengan gelombang terpanjang. Radiasi inframerah memiliki jangkauan tiga "order" dan memiliki panjang gelombang antara 700 nm dan 1 mm. Inframerah ditemukan secara tidak sengaja oleh Sir William Herschell, astronom kerajaan Inggris ketika ia sedang mengadakan penelitian mencari bahan penyaring optik yang akan digunakan untuk mengurangi kecerahan gambar matahari dalam tata surya teleskop

    Karakteristik
    * tidak dapat dilihat oleh manusia
    * tidak dapat menembus materi yang tidak tembus pandang
    * dapat ditimbulkan oleh komponen yang menghasilkan panas
    * Panjang gelombang pada inframerah memiliki hubungan yang berlawanan atau berbanding terbalik dengan suhu. Ketika suhu mengalami kenaikan, maka panjang gelombang mengalami penurunan.

    Jenis-jenis inframerah berdasarkan panjang gelombang
    * Inframerah jarak dekat dengan panjang gelombang 0.75 – 1.5 µm
    * Inframerah jarak menengah dengan panjang gelombang 1.50 – 10 µm
    * Inframerah jarak jauh dengan panjang gelombang 10 – 100 µm

    Kegunaan Inframerah dalam kehidupan
    Kesehatan
    * Mengaktifkan molekul air dalam tubuh. Hal ini disebabkan karena inframerah mempunyai getaran yang sama dengan molekul air. Sehingga, ketika molekul tersebut pecah maka akan terbentuk molekul tunggalyang dapat meningkatkan cairan tubuh.
    * Meningkatkan sirkulasi mikro. Bergetarnya molekul air dan pengaruh inframerah akan menghasilkan panas yang menyebabkan pembuluh kapiler membesar, dan meningkatkan temperatur kulit, memperbaiki sirkulasi darah dan mengurani tekanan jantung.
    * Meningkatkan metabolisme tubuh. jika sirkulasi mikro dalam tubuh meningkat, racun dapat dibuang dari tubuh kita melalui metabolisme. Hal ini dapat mengurangi beban liver dan ginjal.
    * Mengembangkan Ph dalam tubuh. Sinar inframerah dapat membersihkan darah, memperbaiki tekstur kulit dan mencegah rematik karena asam urat yang tinggi.
    * Inframerah jarak jauh banyak digunakan pada alat-alat kesehatan. Pancaran panas yang berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai informasi kondisi kesehatan organ tersebut. Hal ini sangat bermanfaat bagi dokter dalam diagnosis kondisi pasien sehingga ia dapat membuat keputusan tindakan yang sesuai dengan kondisi pasien tersebut. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar. Contoh penggunaan inframerah yang menjadi trend saat ini adalah adanya gelang kesehatan Bio Fir. Dengan memanfaatkan inframerah jarak jauh, gelang tersebut dapat berperang dalam pembersihan dalam tubuh dan pembasmian kuman atau bakteri.

    Bidang komunikasi
    * Adanya sistem sensor infra merah. Sistem sensor ini pada dasarnya menggunakan inframerah sebagai media komunikasi yang menghubungkan antara dua perangkat. Penerapan sistem sensor infra ini sangat bermanfaat sebagai pengendali jarak jauh, alarm keamanan, dan otomatisasi pada sistem. Adapun pemancar pada sistem ini terdiri atas sebuah LED (Lightemitting Diode)infra merah yang telah dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar inframerah, sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau modulasi]] infra merah yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
    * Adanya kamera tembus pandang yang memanfaatkan sinar inframerah. Sinar inframerah memang tidak dapat ditangkap oleh mata telanjang manusia, namun sinar inframerah tersebut dapat ditangkap oleh kamera digital atau video handycam. Dengan adanya suatu teknologi yang berupa filter iR PF yang berfungi sebagai penerus cahaya infra merah, maka kemampuan kamera atau video tersebut menjadi meningkat. Teknologi ini juga telah diaplikasikan ke kamera handphone
    * Untuk pencitraan pandangan seperti nightscoop
    * Inframerah digunakan untuk komunikasi jarak dekat, seperti pada remote TV. Gelombang inframerah itu mudah untuk dibuat, harganya relatif murah, tidak dapat menembus tembok atau benda gelap, serta memiliki fluktuasi daya tinggi dan dapat diinterfensi oleh cahaya matahari.
    * Sebagai alat komunikasi pengontrol jarak jauh. Inframerah dapat bekerja dengan jarak yang tidak terlalu jauh (kurang lebih 10 meter dan tidak ada penghalang)
    * Sebagai salah satu standardisasi komunikasi tanpa kabel. Jadi, inframerah dapat dikatakan sebagai salah satu konektivitas yang berupa perangkat nirkabel yang digunakan untuk mengubungkan atau transfer data dari suatu perangkat ke parangkat lain. Penggunaan inframerah yang seperti ini dapat kita lihat pada handphone dan laptop yang memiliki aplikasi inframerah. Ketika kita ingin mengirim file ke handphone, maka bagian infra harus dihadapkan dengan modul infra merah pada PC. Selama proses pengiriman berlangsung, tidak boleh ada benda lain yang menghalangi. Fungsi inframerah pada handphone dan laptop dijalankan melalui teknologi IrDA (Infra red Data Acquition). IrDA dibentuk dengan tujuan untuk

    mengembangkan sistem komunikasi via inframerah.
    Kelebihan inframerah dalam pengiriman data
    * Pengiriman data dengan infra merah dapat dilakukan kapan saja, karena pengiriman dengan inframerah tidak membutuhkan sinyal.
    * Pengiriman data dengan infra merah dapat dikatakan mudah karena termasuk alat yang sederhana.
    * Pengiriman data dari ponsel tidak memakan biaya (gratis)

    Kelemahan inframerah dalam pengiriman data
    * Pada pengiriman data dengan inframerah, kedua lubang infra merah harus berhadapan satu sama lain. Hal ini agak menyulitkan kita dalam mentransfer data karena caranya yang merepotkan.
    * Inframerah sangat berbahaya bagi mata, sehingga jangan sekalipun sorotan infra merah mengenai mata
    * Pengiriman data dengan inframerah dapat dikatakan lebih lambat dibandingkan dengan rekannya Bluetooth.

    Bidang keruangan
    Inframerah yang dipancarakan dalam bentuk sinar infra merah terhadap suatu objek, dapat menghasilkan foto infra merah. Foto inframerah yang bekerja berdasarkan pancaran panas suatu objek dapat digunakan untuk membuat lukisan panas dari suatu daerah atau objek. Hasil lukisan panas dapat menggambarkan daerah mana yang panas dan tidak. Suatu lukisan panas dari suatu gedung dapat digunakan untuk mengetahui dari zona bagian mana dari gedung itu yang menghasilkan panas berlebihann sehingga dapat dilakukan perbaikan-perbaikan yang diperlukan.
    Bidang Industri
    * Lampu inframerah. Merupakan lampu pijar yang kawat pijarnya bersuhu di atas ±2500°K. hal ini menyebabkan sinar infra merah yang dipancarkannya menjadi lebih banyak daripada lampu pijar bisa. Lampu infra merah ini biasanya digunakan untuk melakukan proses pemanasan di bidang industri.
    * Pemanasan inframerah. Merupakan suatu kondisi ketika energi inframerah menyerang sebuah objek dengan kekuatan energi elektromagnetik yang dipancarkan di atas -273 °C (0°K dalam suhu mutlak). Pemanasan inframerah banyak digunakan pada alat-alat seperti, pemanggang danbola lampu (90% panas – 10% cahaya)


    Radiasi Cahaya Tampak
    Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm (atau dalam frekuensi 790-400 terahertz). Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah hijau dari spektrum optik. Warna pencampuran seperti pink atau ungu, tidak terdapat dalam spektrum ini karena warna-warna tersebut hanya akan didapatkan dengan mencampurkan beberapa panjang gelombang.
    Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi hampir tanpa mengalami pengurangan intensitas atau sangat sedikit sekali (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan menggapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer. Dikatakan jendela optik karena manusia tidak bisa menjangkau wilayah di luar spektrum optik. Inframerah terletak sedikit di luar jendela optik, namun tidak dapat dilihat oleh mata manusia.
    Banyak spesies yang dapat melihat panjang gelombang di luar jendela optik. Lebah dan serangga lainnya dapat melihat cahaya ultraviolet, yang membantu mereka mencari nektar di bunga. Spesies tanaman bergantung pada penyerbukan yang dilakukan oleh serangga sehingga yang berkontribusi besar pada keberhasilan reproduksi mereka adalah keberadaan cahaya ultraviolet, bukan warna yang bunga perlihatkan kepada manusia. Burung juga dapat melihat ultraviolet (300-400 nm).

    Warna-warna di dalam spektrum
    Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :
    ungu 380-450 nm
    biru 450-495 nm
    hijau 495-570 nm
    kuning 570-590 nm
    jingga 590-620 nm
    merah 620-750 nm

    Contoh radiasi matahari yang terdiri dari radiasi inframerah dan radiasi cahaya tampak :


    Radiasi Ultraviolet
    Radiasi ultraungu (sering disingkat UV, dari bahasa Inggris: ultraviolet) adalah radiasi elektromagnetis terhadap panjang gelombang yang lebih pendek dari daerah dengan sinar tampak, namun lebih panjang dari sinar-X yang kecil.
    Radiasi UV dapat dibagi menjadi hampir UV (panjang gelombang: 380–200 nm) dan UV vakum (200–10 nm). Dalam pembicaraan mengenai pengaruh radiasi UV terhadap kesehatan manusia dan lingkungan, jarak panjang gelombang sering dibagi lagi kepada UVA (380–315 nm), yang juga disebut "Gelombang Panjang" atau "blacklight"; UVB (315–280 nm), yang juga disebut "Gelombang Medium" (Medium Wave); dan UVC (280-10 nm), juga disebut "Gelombang Pendek" (Short Wave).
    Istilah ultraviolet berarti "melebihi ungu" (dari bahasa Latin ultra, "melebihi"), sedangkan kata ungu merupakan warna panjang gelombang paling pendek dari cahaya dari sinar tampak. Beberapa hewan, termasuk burung, reptil, dan serangga seperti lebah dapat melihat hingga mencapai "hampir UV". Banyak buah-buahan, bunga dan benih terlihat lebih jelas di latar belakang dalam panjang gelombang UV dibandingkan dengan penglihatan warna manusia.




    Sinar-X
    Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 picometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medikal dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.


    Sinar Gamma
    Sinar gama (seringkali dinotasikan dengan huruf Yunani gama, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.
    Sinar gama membentuk spektrum elektromagnetik energi-tertinggi. Mereka seringkali didefinisikan bermulai dari energi 10 keV/ 2,42 EHz/ 124 pm, meskipun radiasi elektromagnetik dari sekitar 10 keV sampai beberapa ratus keV juga dapat menunjuk kepada sinar X keras. Penting untuk diingat bahwa tidak ada perbedaan fisikal antara sinar gama dan sinar X dari energi yang sama -- mereka adalah dua nama untuk radiasi elektromagnetik yang sama, sama seperti sinar matahari dan sinar bulan adalah dua nama untuk cahaya tampak. Namun, gama dibedakan dengan sinar X oleh asal mereka. Sinar gama adalah istilah untuk radiasi elektromagnetik energi-tinggi yang diproduksi oleh transisi energi karena percepatan elektron. Karena beberapa transisi elektron memungkinkan untuk memiliki energi lebih tinggi dari beberapa transisi nuklir, ada penindihan antara apa yang kita sebut sinar gama energi rendah dan sinar-X energi tinggi.
    Sinar gama merupakan sebuah bentuk radiasi mengionisasi; mereka lebih menembus dari radiasi alfa atau beta (keduanya bukan radiasi elektromagnetik), tapi kurang mengionisasi.
    Perlindungan untuk sinar γ membutuhkan banyak massa. Bahan yang digunakan untuk perisai harus diperhitungkan bahwa sinar gama diserap lebih banyak oleh bahan dengan nomor atom tinggi dan kepadatan tinggi. Juga, semakin tinggi energi sinar gama, makin tebal perisai yang dibutuhkan. Bahan untuk menahan sinar gama biasanya diilustrasikan dengan ketebalan yang dibutuhkan untuk mengurangi intensitas dari sinar gama setengahnya. Misalnya, sinar gama yang membutuhkan 1 cm (0,4 inchi) "lead" untuk mengurangi intensitasnya sebesar 50% jujga akan mengurangi setengah intensitasnya dengan konkrit 6 cm (2,4 inchi) atau debut paketan 9 cm (3,6 inchi).
    Sinar gama dari fallout nuklir kemungkinan akan menyebabkan jumlah kematian terbesar dalam penggunaan senjata nuklir dalam sebuah perang nuklir. Sebuah perlindungan fallout yang efektif akan mengurangi terkenanya manusia 1000 kali.
    Sinar gama memang kurang mengionisasi dari sinar alfa atau beta. Namun, mengurangi bahaya terhadap manusia membutuhkan perlindungan yang lebih tebal. Mereka menghasilkan kerusakan yang mirip dengan yang disebabkan oleh sinar-X, seperti terbakar, kanker, dan mutasi genetika.
    Dalam hal ionisasi, radiasi gama berinteraksi dengan bahan melalui tiga proses utama: efek fotoelektrik, penyebaran Compton, dan produksi pasangan.





    Soal 2 :
    Spoiler untuk jawaban :
    Diketahui : λ = 564 nm = 0,000000564 m
    C = 300.000.000 m/s <--- konstanta kecepatan cahaya

    Ditanya : frekuensi (f) = . . . ?

    Dijawab : f = C/λ
    f = 300.000.000 m/s : 0,000000564 m
    f = 5,319 x 10^14 Hz

    Jadi, frekuensi yang dihasilkan cahaya kuning dari lampu natrium yang mempunyai panjang gelombang 564nm adalah 5,319 x 10^14 Hz.


    Soal 3 :
    Spoiler untuk Jawaban :
    Diketahui : f = 102,3 MHz = 102.300.000 Hz
    C = 300.000.000 m/s <--- konstanta kecepatan cahaya

    Ditanya : λ = . . . ?

    Dijawab : λ = C/f
    λ = 300.000.000 m/s : 102.300.000 Hz
    λ = 2,933 m

    Jadi, Panjang gelombang yang dihasilkan sebuah pemancar radio yang bekerja pada frekuensi 102.3 MHz adalah 2,933 m.


    Spoiler untuk grafik frekuensi :



    100 terimakasih PANITIA
    Last edited by Anbu-LoCk~rBN; 26-08-10 at 20:56.

  3. #63

    Join Date
    Sep 2009
    Location
    follow @JoyNathanK
    Posts
    5,969
    Points
    915.90
    Thanks: 529 / 467 / 325
    Default Category

    Default

    EVENT TANGGAL 26-8-2010 DITUTUP GO ON TO THE NEXT QUESTION

  4. #64
    phantom_ex's Avatar
    Join Date
    Sep 2007
    Location
    Whenever u want Whereever u want
    Posts
    15,853
    Points
    2.78
    Thanks: 557 / 850 / 667

    Default

    Spoiler untuk cara kerja helikopter :
    Helikopter adalah sebuah pesawat yang mengangkat dan terdorong oleh satu atau lebih rotor (propeller) horizontal besar. Helikopter diklasifikasikan sebagai pesawat sayap-berputar untuk membedakannya dari pesawat sayap-tetap biasa lainnya. Kata helikopter berasal dari bahasa Yunani helix (spiral) dan pteron (sayap). Helikopter yang dijalankan oleh mesin diciptakan oleh penemu Slovakia Jan Bahyl.

    Dibandingkan dengan pesawat sayap-tetap lainnya, helikopter lebih komplex dan lebih mahal untuk dibeli dan dioperasikan, lumayan lambat, memiliki jarak jelajah dekat dan muatan yang terbatas. Sedangkan keuntungannya adalah gerakannya; helikopter mampu terbang di tempat, mundur, dan lepas landas dan mendarat secara vertikal. Terbatas dalam fasilitas penambahan bahan bakar dan beban/ketinggian, helikopter dapat terbang ke lokasi mana pun, dan darat di mana pun dengan lapangan sebesar rotor dan setengah diameter. Landasan helikopter disebut helipad.

    Prinsip kerja Helikopter
    Helikopter bisa terbang karena gaya angkat yang dihasilkan oleh aliran udara yang dihasilkan dari bilah-bilah baling-baling rotornya. Baling-baling itu yang mengalirkan aliran udara dari atas ke bawah. Aliran udara tersebut sedemikian deras sehingga mampu mengangkat benda seberat belasan ton. Teorinya sebenarnya cukup sederhana namun prakteknya rumit.

    Airfoil
    Pada dasarnya, prinsip dasar terbang dari pesawat bersayap tetap (fixed wing) dengan helikopter yang dikenal juga pesawat bersayap putar pada dasarnya tetap. Kuncinya ada pada dua kekuatan besar yang bekerja terpadu, menghasilkan gaya angkat dan daya dorong yang besar.
    Pada pesawat bersayap tetap Kekuatan pertama dihasilkan oleh aliran udara di permukaan sayapnya yang membentuk sudut datang tertentu dengan flap yakni sayap kecil di belakang sayap yang posisinya ditegakkan. Sehingga aliran udara mengalir deras ke belakang bisa diarahkan balik ke atas. Udara yang mengalir di permukaan sayap bagian bawah menekan permukaan sayap yang relatif datar itu ikut menekan ke atas menimbulkan gaya angkat dan menyebabkan pesawat terangkat ke atas. Paling kurang 15 persen dari seluruh gaya yang dihasilkan, dipergunakan untuk mengangkat badan pesawat ke atas.

    Kekuatan besar lainnya adalah gaya dorong yang dihasilkan aliran udara yang ada di permukaan sayap bagian atas yang bentuknya relatif lengkung. Ketika aliran udara yang dihasilkan oleh mesin mengalir ke belakang dan melalui sayap utama maka aliran udara itu terpecah. Aliran udara yang mengalir di atas permukaan sayap bagian atas lebih deras dari aliran udara yang menerpa di permukaan sayap bagian bawah. Tetapi tekanan udara yang mengalir deras di atas permukaan sayap atas, relatif lebih kecil dibanding dengan tekanan udara di permukaan sayap bagian bawah yang justru alirannya kurang deras. Perbedaan tekanan udara ini yang menyebabkan sayap pesawat terangkat ke atas. Untuk membayangkan seberapa besar gaya angkat itu, secara teori menyebutkan bahwa perbedaan tekanan udara sebesar 2.5 ounce per inci persegi dapat menghasilkan gaya angkat 20 pound per kaki persegi ( 1 kaki = 20 cm). Bisa dihitung, kalau luas sayap pesawat 1000 kaki persegi maka gaya angkat yang dihasilkan akan mencapai 10 ton.
    Pada helikopter, fungsi sayap digantikan oleh baling-baling yang setiap baling-balingnya meski berukuran lebih kecil dari sayap pesawat biasa, namun ketika diputar, curvanya relatip sama dengan sayap pesawat. Untuk mendapatkan gaya angkat, baling-baling rotor harus diarahkan pada posisi tertentu sehingga dapat membentuk sudut datang yang besar. Prinsipnya sama dengan pesawat bersayap tetap, pada helikopter ada dua gaya besar yang saling memberi pengaruh. Aliran udara yang bergerak ke depan baling-baling menekan baling-baling sehingga bilah baling-baling terdorong balik ke belakang menghasilkan suatu gaya angkat kecil. Tetapi ketika ketika aliran udara bergerak cepat melewati bagian atas dan bawah bilah-bilah baling-baling, tekanan udara yang besar diantara baling-baling otomatis akan mengembang ke seluruh permukaan yang bertekanan lebih rendah, menyebabkan baling-baling terdorong ke atas dan helikopterpun terangkat. Yang perlu diingat, meski bilah-bilah baling-baling itu hanya beberapa lembar, namun dalam keadaan berputar cepat, ia akan membentuk suatu permukaan yang rata dan udara yang menekannya ke atas menimbukan tekanan besar yang akhirnya menghasilkan gaya angkat yang besar pula. Prinsip ini sama dengan fungsi propeler pada pesawat bermesin turboprop dan sama pula dengan "kitiran" mainan anak-anak itu.
    Beberapa helikopter yang digunakan dalam perang, seperti Mi-26 Hind misalnya dilengkapi dengan sayap kecil yang disebut canard, fungsi pertamanya untuk meringankan beban rotor utama dan yang kedua untuk meningkatkan laju kecepatan dan memperpanjang jangkauan jelajah. Fungsi lain adalah sebagai gantungan senjata, rudal dan lain-lainnya. Dengan menambahkan sayap pendek ini, maka perbedaan fungsional antara pesawat tetap dengan helikopter menjadi samar. Pesawat bersayap tetap juga ada yang mampu terbang-mendarat secara vertikal (Vertical Take-off Landing/VTOL). Contonya, Harrier dari jenis Sea Harrier atau AV-8 Harrier.

    Kelebihan pesawat bersayap tetap, terutama soal terbangnya karena pesawat berjenis ini memiliki platform yang lebar sehingga relatif lebih stabil saat melakukan penerbangan. Soal menerbangkannya, itu persoalan mengatur kemudi guling pada sayap dan stabilizer tegak dan datar yang ada pada ekornya. Tetapi pada Helikopter tidaklah demikian. Ketika bilah-bilah baling-baling rotornya menghasilkan gaya angkat rotornya sendiri sendiri bekerja memindahkan udara di atasnya ke bawah sebanyak banyaknya. Disaat itu berat udara yang dipindahkan mengurangi berat helikopter sehingga helikopter itu terangkat. Dan bila helikopter itu terangkat, berarti terjadi keseimbangan berat antara udara yang dipindahkan dari atas ke bawah dengan bobot helikopternya. Untuk mengoperasikan helikopter itu ada alat kemudi yang biasa disebutcollective pitch dan cyclic pitch masing-masing berfungsi sebagai pengatur gaya angkat dan pendorong helikopter untuk melaju ke depan. Begitu sederhana cara kerjanya, tetapi mentransformasikannya dalam sebuah teknologi sungguh pekerjaan yang sangat rumit.

    Tail rotor
    Begitu pula halnya dengan konfigurasi rotor, bukan hanya sekedar bisa berputar lalu terbang dan mengambang. Sebab setap baling-baling diputar akan selalu menimbulkan tenaga putaran yang disebut dengan istilah umum torque. Untuk menghilangkan atau menangkal tenaga putar yang bisa menyebabkan badan helikopter itu berputar, maka perlu dipasang antitorque.
    Antitorque ini dapat berupa tail rotor atau rotor ekor yang dipasang pada ekor pesawat yang juga berfungsi sebagai rudder. Konfigurasi ini dapat dilihat pada helikopter umumnya seperti Bell-412, Bell-205 atau UH-1 Huey, atau NBO-105, dan AS-330 Puma atau AS-335 Super Puma, AH-64 APACHE atau Mi-24 HIND. Selin menggunakan tail rotor, masih ada beberapa desai yang lain. Misalnya yang menggunakan sistem tandem seperti yang digunakan pada helikopter Boeing CH-47 Chinook atau CH-46 Sea Knight. Kedua rotor tersebut yang bersama-sama berukuran besar masing-masing ditempatkan di depan dan di belakang badan helikopter. Keduanya simetris namun memiliki putaran yang berlawanan arah . Maksudnya untuk saling meniadakan efek putaran yang ditimbulkan satu sama lain, intermesh dalam bahasa populernya. Cara lain adalah dengan konfigurasi egg-beater. Konfigurasi rancang bangun seperti ini digunakan pada helikopter Ka-25 Kamov buatan Rusia atau Kaman HH-43 Husky. Kedua baling-baling yang sama besarnya itu diletakkan dalam satu poros, terpisah satu sama lain dimana yang satu diletakkan diatas rotor lainnya. Keduanya berputar berlawanan arah. Maksudnya untuk menghilangkan efek putaran atau torque.

    Selain ketiga cara diatas, dibuat juga konfigurasi tanpa rotor ekor. Helikopter ini desebut NOTAR (No Tail Rotor) ini memiliki sistem yang sedikit berbeda dengan sistem yang ada dimana memanfaatkan semburan gas panas dari mesin utama yang disalurkan melalui tabung ekor. Contohnya adalah helikopter MD-902 Explorer.

    Rotor Aktif atau Tilt Rotor dan Sayap Aktif atau Tilt Wing
    Tinggal landas dan mendarat ala helikopter tetapi berkarakter terbang macam pesawat bersayap tetap merupakan konsep yang dianut oleh helikopter jenis ini. Cara paling mudah adalah menggabungkan konsep kerja pesawat helikopter dengan pesawat bersayap tetap dalam satu wujud.
    Prinsip kerjanya secara teknis bila rotor utama diarahkan ke atas maka gerakan vertikal yang dilakukan helikoter dapat dilakukan sedangkan saat rotor diarahkan ke depan atau ke belakang (sebagai pursher atau pendorong) maka karakter terbang seperti pesawat tetap dapat diperoleh. Gerakan rotor seperti ini tidak perlu melibatkan sayap.
    Sebenarnya pengembangan rotor aktif ini masih diliputi kegamangan, masalahnya adalah sistem tadi bisa saja disebut pesawat bersayap tetap karena memiliki sayap yang berlumayan besar, sekaligus memiliki ekor pesawat yang berkonfigurasi dengan pesawat bersayap tetap biasa. Akhirnya konsep ini disebut dengan konsep hybrid. Contoh helikopter ini adalah V-22 Osprey. Selain konsep rotor aktif, ada pula konsep sayap aktif, dimana yang digerakkan bukanlah rotor seperti pada rotor aktif melainkan sayap pesawatnya. Sementara mesin tetap pada kedudukannya. Contoh helikopter ini adalah TW-68 yang dirancang oleh Ishida Corporation, Jepang, Rancangan ini disebut-sebut sebut sebagai memiliki rancangan yang lebih ringkas dibandingkan dengan rotor aktif hanya sayangnya keberlanjutannya tidak begitu terdengar.

    Kursi Lontar pada Helikopter
    Dibandingkan pada pesawat biasa khususnya pesawat tempur, pesawat helikopter umumnya tidak dilengkapi dengan kursi lontar. Hal ini disebabkan karena masalah menghadapi rotor helikopter saat meluncurkan kursi lontar sekaligus umumnya helikopter terbang lebih rendah sehingga lebih rentan. Namun demikian pada helikopter Rusia, Kamov Ka-50 Hokum yang menggunakan kursi lontar yang dirancang khusus seperti Zvesda K-37-800. Langkah kerjanya adalah ketika kursi lontar diaktifkan, maka rotor diledakkan dan lepas dari kedudukannya, kemudian kedua sisi atas kaca kokpit membuka dan roket penarik aktif yang menarik pilot dan kirsinya keluar dari badan heli. Meski dirasa rumit, Helikopter masa depan akan dilengkapi dengan kursi lontar

    Penemuan Helikopter
    Sebenarnya, perjalanan helikopter menjadi bentuk yang dikenal pada saat ini memakan kurun waktu yang cukup panjang. Dalam perjalanannya, juga melibatkan perkembangan teknologi dan juga para penemu serta pengembang helikoter.
    Helikopter pertama yang menerbangkan manusia adalah Helikopter Breguet-Richet, tahun 1907. Heli ini terbang di Douai, Perancis pada 29 September 1907. Helikopter ini masih memperoleh bantuan dari empat orang yang memegangi keempat kakinya. Upaya ini tidak memperoleh catatan baik sebagai helikopter pertama yang terbang bebas. Walaupun demikian, helikopter ini membuktikan keberhasilan teori terbang vertikal yang saat itu masih dianggap sebagai teori. Ini merupakan mesin pertama yang bisa terbang dengan sendirinya membawa seorang pilot secara vertikal sebagai akibat daya angkat sayap putarnya. Heli ini menggunakan mesin Antoinette berkekuatan 50 hp.

    Terbang heli sesungguhnya dilakukan oleh Paul Cornu menggunakan heli bermesin ganda Antoinette 24 hp di Lisieux, Perancis pada 13 November 1907. Penerbangan berlangsung 20 detik hingga ketinggian 0,3 Meter. Sedangkan Helikopter berjenis Gyroplane pertama diraih oleh C4 Autogiro buatan Juan de la Cierva. Autogiro terbang pertama pada 9 Januari 1923]]. Rahasia sukses pada pengadopsian sistem flapping hinges joint the blades to the rotor head. Sementara helikopter yang sukses terbang pertama dilakukan oleh jenis Fock Wulf FW-61 berotor ganda yang didesain oleh Professor Heinrich Focke pada tahun 1933-1934. Helikopter ini melakukan terbang perdananya pada 26 Juni 1936 dan ditenagai oleh mesin Siemens-Halske Sh 14A bertenaga 160 hp. Heli ini diterbangkan oleh Ewald Rohlfs. Heli ini mencatat rekor terbang sejauh 122,35 km dan lama terbang satu jam 20 menit 49 ******* Pada waktu lain ia terbang hingga ketinggian 3427 meter dan rekor kecepatan 122 km/jam.

    Pionir pengembang teknologi Helikopter
    Leonardo da Vinci (1452-1519)
    Leonardo da Vinci sebenarnya mengembangkan konsep terbang vertikal yang sebelumnya merupakan mainan anak-anak dari dataran ****, tidak jelas sebenarnya sejak kapan mainan anak-anak ini dikembangkan disana dan siapa inisiatornya atau penemunya. Pada tahun 1483 Leonardo da Vinci mengembangkan konsep sekrup terbang.

    Sir Goerge Cayley (1773-1857)
    Sir George Cayley dikenal sebagai insinyur dan inovator dalam navigasi udara dan aerodinamika. Salah satu yang dikenalkannya adalah istilah angle of attack dalam dunia penerbangan. Dalam sejarah, dia merupakan sosok yang mengembangkan pesawat sayap tetap dan pesawat layang atau glider namun demikian dia mengembangkan sayap putar atau helikopter. Helikopter yang diperkenalkannya merupakan kompilasi dari bahan kayu, bulu, gabus dan kawat.

    Pada 1842, Cayley mendesain helikopter lebih baik , khususnya ketika mengetahui bahwa putaran baling-baling dapat menimbulkan petaka sehingga memerlukan penangkalnya. Teori penangkal ini juga dikemukakan olehnya. Agar bisa terbang, helikpter ini menempatkan dua rotor yang bergerak berlawanan arah. Meski helikopter rancangannya belum berwujud dengan helikopter yang mengudara, konsep helikopternya dipakai oleh Kamov dari Rusia dan Focke dari Jerman.

    Nikolai Egorovich Zhikovsky (1847-1921)
    Zhukovsky mengawali karier di dunia penerbangan dengan menekuni matematika, hidrodinamika dan aerodinamika. Zhukovsky kemudian menemukan terowongan angin pertama di dunia untuk menguji teknologi aerodinamika. Terjun dalam pengembangan helikopter pada tahun 1910 dan pada Perang Dunia I mengembangkan banyak pesawat terbang dan helikopter

    Juan de la Cierva (1895-1936)
    Cierva mengembangkan helikopter setelah pesawat pembom bersayap ganda buatannya jatuh pada tahun 1919, alasannya adalah kestabilan helikopter dianggapnya lebih tinggi. Dalam membangun rancangan helikopternya, Cierva mengabaikan berbagai teori yang berkembang sebelumnya, dengan menggunakan rancangan-rancangan baru buatannya yang didasarkan pada teori yang dikembangkannya lewat berbagai eksperimen. Hasinya adalah Autogiro yang merupakan konsep pesawat gado-gado antara pesawat terbang umumnya sehingga bisa melakukan terbang landas secara vertikal, yang setengah pesawat terbang dan setengah helikopter. Autogiro Cierva terbang pada 1923. Lima tahun kemudian Cierva melakukan penerbangan keliling Eropa dengan Autogiro sejauh lebih dari 5000 km seraya berpromosi. Upayanya tidak sia-sia karena Autogiro rancangannya banyak diminati sejumlah industri di Eropa. Cierva meninggal dalam kecelakaan Autogiro di Croydon pada tahun 1936.

    Igor Ivanovich Sikorsky (1889-1972)
    Sikorsky menaruh minat pada penerbangan dengan merancang berbagai pesawat model diantaranya berupa helikopter sejak usia dini. Pada awalnya dia masuk Naval Academy di St. Petersburg yang kemudian mengundurkan diri dan pergi ke Paris untuk mendalami ilmu teknik dan penerbangan. Setelah dari Paris, dia kembali ke Kiev, Ukraina dan mengembangkan helikopter namun gagal. Revolusi Bolshevik memaksa Sikorsky hijrah ke Paris dan selanjutnya menetap di Amerika Serikat.
    Pada tahun 1939 dia menerbangkan helikopter pertamanya VS-300 dan selama pengembangannya, helikopternya mencatat berbagai rekor penerbangan. Sampai memasuki abad ke-21 ada sekitar 40.000 helikopter buatan Sikorsky terbang diberbagai belahan dunia ini.

    Mikhail Mill (1909-1970)
    Seperti halnya Sikorsy, Mill menaruh minat pada penerbangan diusia dini. Dia memenangkan kompetisi pesawat model pada usia 12 tahun. Ia kemudian masuk ke Insitut Aviasi di Novocherkassk dan mengembangkan autogiro pertamanya dengan pengawasan dan bimbingan Kamov dan Skrzhinsky. Setelah lulus pada 1931, dia masuk ke pusat aerodinamika Rusia TsAGi, dan disinilah melakukan penelitian pada aerodinamika helikopter dengan penekanan pada stabilitas dan desain rotor.

    Pada tahun 1947, Mil diangkat menjadi kepala desain helikopter yang baru dan memunculkan helikopter GM-1 yang dikenal menjadi Mi-1 Hare. Sukses Hare menuntun pengembangan helikopter selanjutnya yang sangat terkenal seperti Mi-4, Mil Mi-6 Hook, Mi-8 dan lain-lain.

    Yum Soemarsono (1916-1999)
    Yum Soemarsono dikenal sebagai bapak helikopter Indonesia. Berbeda dengan penemu dan pengembang helikopter lainnya, dia mengembangkan helikopter sendiri berdasarkan pengalaman dan intuisi serta keterampilannya yang tidak diperoleh dari pendidikan tinggi. Rancangannya berupa Rotor Stabilizer dibuatnya hanya berdasarkan intuisi.
    Helikopter pertama rancangannya adalah RI-H yang selesai pada tahun 1948 namun tidak sempat diterbangkannya karena lokasi pembuatannya di Gunung Lawu dibom Belanda pada saat Revolusi Kemerdekaan Indonesia. Heli kedua adalah YSH yang dirancang bersama Soeharto dan Hatmidji, selesai pada tahun 1950 dan melayang setinggi 10 cm di lapangan Sekip Yogyakarta. Sementara Helikopter ketiga adalah Seomarcopter yang berhasil terbang ketinggian 3 meter sejauh 50 meter dengan mesin berdaya 60 hp pada 1954. Helikopter ke empat adalah Kepik yang ironisnya mengalami kecelakaan dan menyebabkan kehilangan tangan kirinya dan sekaligus menewaskan asistennya, Dali. Nama kepik sendiri adalah nama pemberian presiden Republik Indonesia pertama Soekarno.

    Kehilangan tangan kirinya membuatnya menemukan suatu alat yang dinamakan throttle collective device untuk mengganti tangan kirinya yang putus, sehingga penerbang cacat masih mampu menerbangkan helikopter. Alat ini digunakan untuk mengangkat dan memutar collective, salah satu kemudi yang terletak pada sisi kiri penerbang. Semula hanya didesain untuk helikopter jenis Hiller, namun kemudian dikembangkannya untuk dipakai pada helikopter Bell 47G dan Bell 47J2A, hadiah dari Solichin GP. Meski alat ini kemudian diminati oleh pabrik helikopter Bell di Amerika Serikat, tidak ada kejelasan selanjutnya mengenai pengembangan alat ini dan sekaligus juga hak patennya. Beliau meninggal pada 5 Maret 1999.



    Spoiler untuk Cara Kerja Pesawat Terbang :

    Spoiler untuk sejarah :

    Pesawat terbang yang lebih berat dari udara diterbangkan pertama kali oleh Wright Bersaudara (Orville Wright dan Wilbur Wright) dengan menggunakan pesawat rancangan sendiri yang dinamakan Flyer yang diluncurkan pada tahun 1903 di Amerika Serikat. Selain Wright bersaudara, tercatat beberapa penemu pesawat lain yang menemukan pesawat terbang antara lain Samuel F Cody yang melakukan aksinya di lapangan Fanborough, Inggris tahun 1910. Setelah zaman Wright, pesawat terbang banyak mengalami modifikasi baik dari rancang bangun, bentuk dan mesin pesawat untuk memenuhi kebutuhan transportasi udara.


    Prinsip dasar dari cara pesawat terbang untuk mengudara sama untuk semua pesawat, baik pesawat capung maupun pesawat super jumbo seperti Airbus A380.

    Yang mempengaruhi pesawat unutk terbang adalah gaya - gaya aerodinamis yang mengenainya yaitu, gaya angkat (lift), gaya hambat (drag), gaya berat (grafitasi), dan gaya dorong (trust).
    Spoiler untuk lebih jelasnya :



    Gaya dorong pesawat kedepan didapat dari baling-baling yang berputar pada ujung pesawat (lihat gambar). Sedangkan gaya hambat merupakan pergesekan pesawat udara dengan angin. Karena pesawat udara mempunyai massa, maka gaya grafitasi akan membawa pesawat kebawah, untuk itulah gaya angkat diperlukan. Gaya angkat dihasilkan dari sayap pesawat udara.
    Sayap pesawat udara ini yang memegang peranan kunci untuk mengkat badan pesawat. Penampang sayap ini biasanya disebut " aerofoil" Selama penerbangan udara mengalir ke atas dan bawah sayap. Udara yang megalir diatas sayap lebih cepat dari udara yang mengalir dibawah sayap, sehingga tekanan udara diatas pesawat lebih rendah.
    Disaat yang bersamaan udara dibawah sayap dibelokan kebawah, sehingga terjadi gaya angkat (udara yang terdorong kebawah akan mendorong sayap keatas- gaya aksi reaksi).
    Spoiler untuk lebih jelasnya :



    Gaya dorong terhadap sayap dan tekanan udara yang rendah diatas sayap inilah yang di butuhkan untuk pesawat terbang di udara.

    Terdapat beberapa faktor yang menyebabkan pesawat dapat terbang, diantaranya :
    Spoiler untuk sayap :



    sayap
    Sebuah pesawat memerlukan gaya angkat atau lift yang di butuhkan untuk terbang. Lift dihasilkan oleh permukaan suatu sayap (wing) yang berbentuk airfoil.

    Bentuk penampang airfoil pada suatu sayap pesawat terbang


    Gaya angkat terjadi karena adanya aliran udara yang melewati bagian atas dan bagian bawah di sekitar airfoil. Pada saat terbang, aliran udara yang melewati bagian atas airfoil akan memiliki kecepatan yang lebih besar daripada kecepatan aliran udara yang melewati bagian bawah dari airfoil. Maka, pada permukaan bawah airfoil akan memiliki tekanan yang lebih besar daripada permukaan di atas. Perbedaan tekanan pada bagian atas dan bawah inilah yang menyebabkan terjadinya gaya angkat atau lift pada sayap pesawat. Oleh karena tekanan berpindah dari daerah yang bertekanan besar menuju ke daerah yang bertekanan kecil, maka tekanan pada bagian bawah airfoil akan bergerak menuju bagian atas airfoil sehingga tercipta gaya angkat pada sayap pesawat. Gaya angkat inilah yang membuat pesawat dapat terbang dan melayang bebas di udara.



    Spoiler untuk Powerplant (Tenaga Penggerak) :

    Untuk bergerak ke depan (baik di darat maupun di udara), pesawat memerlukan daya dorong yang di hasilkan oleh tenaga penggerak atau yang biasa di sebut dengan mesin (engine). Daya dorong yang nantinya di hasilkan oleh engine ini biasa di sebut dengan thrust.
    Terdapat beberapa jenis engine dari pesawat, diantaranya :
    -Piston Engine
    -Turbojet Engine
    -Turboporop Engine
    -Turbofan Engine
    -Turboshaft Engine
    Spoiler untuk Piston Engine :

    Piston engine atau biasa di sebut dengan mesin torak, merupakan mesin yang menggunakan piston (torak) sebagai tenaga penggerak. Piston yang bergerak naik turun di hubungkan dengan crankshaft melalui connecting rod untuk memutar propeller atau baling-baling. Piston dapat bergerak naik turun karena adanya pembakaran antara campuran udara dengan bahan bakar (fuel) di dalam ruang bakar (combustion chamber). Pembakaran di dalam combustion chamber menghasilkan expansion gas panas yang dapat menggerakkan piston bergerak naik turun.
    Spoiler untuk Piston Engine :



    Pesawat yang menggunakan mesin piston umumnya menggunakan propeller sebagai tenaga pendorong untuk menghasulkan thrust. Bentuk penampang dari propeller itu sendiri sama seperti sayap, yaitu juga berbentuk airfoil. Sehingga pada saat propeller berputar maka akan menghasilkan gaya dorong atau thrust sehingga pesawat dapat bergerak ke depan. Pesawat dengan mesin piston ini merupakan jenis pesawat ringan atau biasa di sebut dengan light aircraft. Pesawat ini mempunyai daya jelajah yang kecil dan ketinggian terbang yang tidak terlalu tinggi.


    Spoiler untuk Turbojet Engine :

    Pada dasarnya, prinsip kerja dari semua engine pesawat sama. Yaitu memanfaatkan energi pembakaran antara campuran bahan bakar dengan udara yang menghasilkan expansion gas yang terjadi di dalam ruang bakar cc (combustion chamber).
    Dinamakan turbojet engine karena mesin ini menggunakan turbin dalam membangkitkan tenaga, dan jet yang artinya semburan/pancaran. Yaitu semburan hasil pembakaran di dalam cc keluar menuju turbin dan memutar turbin, lalu turbin memutar compressor dan menggerakkan komponen engine lainnya.
    Spoiler untuk Turbojet Engine :



    Spoiler untuk Turboprop Engine :

    Prinsip kerja dari Turboprop engine sama dengan proses kerja dari turbojet engine. Yang membedakannya adalah terdapat propeller pada engine ini. Propeller terhubung dengan turbin dan compressor melalui shaft.
    Spoiler untuk Turboprop Engine :



    Spoiler untuk Turbofan engine :

    Sama dengan turboprop, prinsip kerja turbofan sama dengan turbojet engine. Perbedaannya adalah pada turbofan engine terdapat fan di depan compressor. Fan berfungsi untuk menghisap udara masuk ke dalam compressor.
    Spoiler untuk Turbofan engine :



    Spoiler untuk Turboshaft Engine :

    Prinsip kerja dari turboshaft engine juga hampir sama deng an turbojet engine. Engine ini di gunakan pada helikopter. Pada turboshaft engine, terdapat shaft yang terhubung dengan turbin. Shaft ini menghubungkan ke main rotor atau baling-baling pada helikopter. Rotor pada helikopter mempunyai penampang berbentuk airfoil.
    Spoiler untuk Turboshaft Engine :



    Spoiler untuk Bidang Kendali ( Flight Control Surface) :

    Bidang Kendali (Flight Control Surface)
    Untuk menggerakkan pesawat (berbelok, menukik, dan rolling atau berbalik), seorang pilot memerlukan bidang kendali atau control surface .

    Primary control surface
    Primary control surface atau bidang kendali utama adalah bidang kendali pesawat yang dapat mengatur pergerakan pesawat pada saat terbang di udara.
    Aileron, elevator, dan rudder merupakan bidang kendali utama pada pesawat.
    1). Aileron terletak pada sayap, digunakan pesawat pada saat melakukan rolling (berbalik) di udara dan pergerakannya berada pada sumbu longitudinal pesawat, aileron dikendalikan dengan menggunakan stick control yang berada pada cockpit.
    2). Elevator terletak pada bagian ekor (empenage) atau bagian horizontal stabilizer, digunakan pesawat untuk melakukan piching (mengangguk) dan pergerakannya pada sumbu lateral pesawat, elevator di kendalikan dengan menggunakan stick control yang berada di ruangan cockpit.
    3). Rudder terletak di pada bagian ekor tepatnya di bagian vertical stabilizer, di gunakan pesawat untuk melakukan yawing (berbelok) diudara dan pergerakannya pada sumbu vertical pesawat, rudder di kendalikan dengan menggunakan rudder pedal yang terletak pada ruang cockpit.
    Spoiler untuk Bidang kendali pesawat dengan sumbu dan arah pergerakannya :



    Spoiler untuk Bidang kendali pesawat dengan sumbu dan arah pergerakannya :



    Spoiler untuk Bidang kendali pesawat dengan sumbu dan arah pergerakannya :



    Spoiler untuk turbulensi :
    Turbulensi adalah sebuah keadaan yang ditandai ketidakstabilan (disorder) dan keacakan (randomness) pergerakan di setiap skalanya. Turbulensi menarik komponen-komponen yang dipengaruhinya ke arah tertentu dan kemudian melepasnya secara tiba-tiba. Timbullah guncangan.

    Penyebab:
    1. Suhu – Pemanasan dari matahari menyebabkan masa udara panas naik dan sebaliknya masa udara dingin turun, turbulensi jenis ini sering disebut dengan ”turbulensi thermis”
    2. Jet stream – Pergerakan yang sangat cepat arus udara pada level ketinggian yang tinggi, dan mempengaruhi udara disekitarnya.
    3. Pegunungan – Massa udara yang melewati pegunungan dan mengakibatkan turbulensi pada saat pesawat terbang diatasnya pada sisi yang lain. Turbulensi jenis ini sering disebut dengan “turbulensi mekanis”
    4. Wake turbulence – Turbulensi yang terjadi dekat dengan permukaan yang dilewati pesawat atau helikopter






    80 .......... PANITIA
    Last edited by Anbu-LoCk~rBN; 27-08-10 at 18:18.

  5. #65
    [eX]HoaM's Avatar
    Join Date
    May 2009
    Posts
    112
    Points
    212.60
    Thanks: 3 / 0 / 0

    Default

    Spoiler untuk Jawaban event I tanggal 27-08-2010 :

    Spoiler untuk Cara kerja Pesawat Terbang :

    bentuk dasar sebuah sayap pesawat terbang adalah seperti yang terlihat di gambar 1. Perhatikan bahwa dasar sayap adalah datar. Sedangkan permukaan atas sayap melengkung dengan sudut tertentu. Bentuk ini yang menyebabkan perbedaan tekanan antara bagian atas dan bagian bawah sayap mendorong pesawat ke atas.

    [penampang sayap]
    Ini adalah aplikasi dari ide Bernoulli (1700-1782). Memang kalau kita mempelajari aerodinamika lebih dalam, teori ini mungkin tidak berlaku lagi pada kecepatan tertentu, tapi ide Bernoulli masih merupakan prinsip dasar dari cara kerja sebuah sayap pesawat.

    Seorang penerbang tidak memerlukan aplikasi rumit dari persamaan Bernoulli, tapi dapat memahami cara kerja pesawat dengan memahami hukum fisika dari persamaan tersebut.

    Bernoulli, dari namanya pasti dia bukan dari kampung halaman saya di Cisarua, mengatakan bahwa, dalam sebuah streamline perbandingan antara tekanan fluida (udara dalam hal ini juga adalah fluida), dan kecepatannya adalah konstan. Pusing? Saya juga pusing.

    [Prinsip Bernoulli]
    Jadi dalam gambar kedua, terlihat bahwa di dalam pipa di atas titik B dengan kecepatan yang lebih rendah maka tekanannya akan lebih tinggi.

    Sedangkan di atas titik A, karena pipa yang dilewati fluida lebih sempit maka kecepatan menjadi lebih tinggi dan ternyata tekanannya menjadi lebih rendah. Jika anda membutuhkan rumus teori ini dapat dicari di Internet dengan mudah dengan kata kunci Bernoulli.

    Aplikasi pada sayap pesawat
    Dengan teori di atas, maka sayap pesawat di buat seperti gambar di bawah ini.

    [Udara mengalir di sayap pesawat]

    Udara akan mengalir melewati bagian atas sayap dan bagian bawah sayap. Sebenarnya bukan udara yang mengalir melewati sayap pesawat, tapi sayap pesawatlah yang maju “menembus” udara. Tapi kita akan mengasumsikan aliran ini dengan gambar sayap yang diam.

    Dengan bentuk yang melengkung di atas, maka aliran udara di atas sayap membutuhkan jarak yang lebih panjang dan membuatnya “mengalir” lebih cepat dibandingkan dengan aliran udara di bawah sayap pesawat.

    Karena kecepatan udara yang lebih cepat di atas sayap, maka tekanannya akan lebih rendah dibandingkan dengan tekanan udara yang “mengalir” di bawah sayap. Tekanan di bawah sayap yang lebih besar akan “mengangkat” sayap pesawat dan disebut GAYA ANGKAT / LIFT.

    Karena itu, kecepatan pesawat harus dijaga sesuai dengan rancangannya. Jika kecepatannya turun maka lift nya akan berkurang dan pesawat akan jatuh, dalam ilmu penerbangan disebut STALL. Kecepatan minimum ini disebut Stall Speed.

    Jika kecepatan pesawat melebihi rancangannya maka juga akan terjadi stall yang dinamakan HIGH SPEED STALL.

    Tapi perlu juga diingat, bahwa hukum ini bukanlah satu-satunya hukum yang bekerja untuk menghasilkan lift. Hukum Bernoulli tidak bisa menjelaskan kenapa pesawat kertas yang kita buat bisa terbang. Artikel berikut akan menjelaskan hukum lain yang terlibat:
    Spoiler untuk Prinsip Penerbangan - 4 Gaya yang mempengaruhi pesawat :

    Hal yang menarik dari kendaraan yang bernama pesawat terbang adalah terbang ke atas melawan gravitasi bumi. Ini di sebut lift atau gaya angkat. Untuk kesederhanaan tulisan, maka selanjutnya kata lift dan istilah-istilah lain hanya diterjemahkan di awal tulisan.

    Pembahasan dalam aerodinamika ini dibatasi pada pesawat berbaling-baling dan bermesin piston. Aneka kombinasi letak mesin tidak dibahas. Pesawat dengan model seperti ini mempunyai mesin piston yang memutar baling-baling di depan pesawat. Seperti halnya kipas angin, baling-baling ini meniup udara ke belakang dengan kuat sehingga terjadi reaksi dari pesawat itu sendiri untuk bergerak ke depan. Gaya dorong dari baling-baling ini disebut THRUST. Gaya ini bekerja ke depan.

    [4 forces of flight]

    Pada waktu bergerak ke depan, udara yang dilewati oleh pesawat menghasilkan gesekan yang menahan gerakan pesawat tersebut. Gaya gesek ini disebut DRAG. Dengan adanya DRAG maka dibutuhkan lebih banyak THRUST untuk menggerakkan pesawat.

    Pada waktu pesawat digerakkan ke depan dengan kecepatan tertentu, sayap menghasilkan gaya angkat yang disebut LIFT. LIFT ini bertambah seiring dengan bertambahnya kecepatan pesawat. Tapi jika kecepatan pesawat terus ditambah, maka DRAG yang terjadi akan terlalu besar dan sayap pesawat akan berhenti menghasilkan LIFT.

    Gaya yang terakhir adalah gaya yang kita kenal dengan berat, yang dalam tulisan ini selanjutnya disebut WEIGHT.

    Spoiler untuk Mesin :

    Banyak macamnya, sejalan dengan kemajuan jaman tiap saat banyak penyempurnaan bahkan jenis yang sama sekali baru. Namun kita batasi pada mesin yang lazim dipakai oleh pesawat-pesawat latih kecil. Umumnya pesawat macam ini menggunakan mesin resiprokal (kayak mesin VW) 4 langkah (kata montir “4 tak”), disebut demikian karena gerakannya yang maju mundur pada cangkang silindernya.

    Prinsip kerja
    Mesin macam ini bekerja bak pompa yang menyemprotkan kabut BBM (Bahan Bakar Minyak) dan udara pada ruang bakarnya. Campuran ini dipantik oleh api busi yang menyala pada saat yang diatur untuk membakarnya sehingga menghasilkan daya. Semakin banyak campuran udara dan BBM dialirkan pada saat yang ditentukan semakin besar daya yang dihasilkan.

    Spoiler untuk Siklus mesin 4 langkah :

    Gerakan maju mundur atau naik turun sebuah torak terjadi karena pengapian dan pembakaran terkendali dalam cangkang silinder, inilah siklus berulang yang menghasilkan daya terjadi pada mesin 4 langkah.

    Ada 4 gerakan torak di jenis ini, intake (pemasukan) saat ini campuran kabut BBM dan udara masuk ruang bakar (cangkang silinder) karena dihisap oleh gerakan turun torak dan katup masuk yang terbuka. Kemudian torak kembali maju / naik, sementara semua katup tertutup sehingga campuran yang ada dipampatkan sampai batas kompresi maksimalnya, gerakan ini dinamakan kompresi (compression). Kemudian campuran yang telah padat ini dibakar oleh busi-busi yang ada sehingga meledak dan menghasilkan daya karenanya disebut fase daya (power), sekaligus mendorong torak mundur / turun. Kemudian gerakan berikut disebut pembuangan (exhaust) karena sisa bakaran didorong melalui katup buang yang terbuka langsung menuju knalpot.

    Pada mesin 4 langkah tiap silinder melewati 4 fase ini pada waktu bersamaan secara bergantian. Misalkan silinder 1 sedang intake maka silinder 4 biasanya exhaust, kemudian silinder 2 mengalami kompresi disamping silinder 3 yang sedang fase power. Begitu berulang terus secara bergantian selama mesin masih bergerak. Putaran ini dihasilkan oleh crankshaft yang dipantik oleh penyalaan yang presisi untuk tiap silinder.

    Spoiler untuk Pembakaran abnormal :

    Waktu pengapian tepat akan menghasilkan daya optimum. Disamping perawatan rutin perlakuan terhadap mesin menentukan kenyamanan dan keamanan terbang. Service bulletin dan airworthines directive juga harus dipatuhi, selain langkah-langkah perawatan rutin yang digariskan oleh pabrikan. Jenis bahan bakarpun harus dipatuhi, selain itu tipe pelumas harus tepat untuk setiap kondisi dimana pesawat sedang digunakan. Rekomendasi-rekomendasi pabrikan ini dibuat selain untuk keamanan, kenyamanan terbang dan keawetan mesin juga mengurangi kemungkinan kondisi abnormal yang lazim ditemui. Kemungkinan penyimpangan adalah detonasi atau ledakan liar dan pembakaran awal atau “nglitik”.

    Saat pembakaran normal campuran BBM dan udara terbakar terkendali dan dapat mudah diatur. Namun bisa terjadi pembakaran liar dan pengapian yang meledak-ledak dalam silinder yang disebut detonasi (detonation). Kondisi ini membuat mesin kepanasan dan jika tak cepat dikoreksi bisa berakibat kemacetan torak di silinder dan juga katup.

    Ini terjadi jika pemakaian bahan bakar yang tidak tepat jenis oktannya, lepas landas dengan mesin yang sudah kepanasan, terbang kontinyu pada RPM tinggi dan kecepatan rendah, atau campuran BBM yang miskin (lean). Jika Anda mengalami ini saat menanjak, dinginkan mesin dengan menurunkan throttle dan melandaikan sudut tanjak.

    Jika di mobil Anda mendengar bunyi nglitik maka hal ini kerap terjadi pada mesin pesawat karena pengapian yang terjadi sebelum waktu yang ditentukan. Hal ini disebabkan oleh kerak karbon yang melekat di busi, atau keramik isolator busi yang retak juga akibat kerusakan di ruang bakar. Kedua gejala ini (nglitik dan detonasi) sering bersamaan karena saling berakibat, indikasi yang jelas adalah panas berlebih dan suara mesin yang kasar. Menghindarinya dengan cara menggunakan BBM yang tepat dan pencampuran yang tepat pula.

    Spoiler untuk Sistem mesin :

    Setelah mengenal sekilas komponen dasar kerja sebuah mesin, kini kita lihat bagaimana memantau dan mengendalikan mesin pesawat termasuk throttle, mixture, pengapian, pengkabutan BBM, pelumasan dan sistem pendingin.

    [Tuas Pengendali throttle dan mixture ]

    Spoiler untuk Pengendali mesin :

    Pada pesawat latih mula biasanya digunakan baling-baling dengan bilah bersudut tetap (fixed pitch). Pada jenis ini, mesin hanya dikendalikan oleh dua tuas: throttle dan mixture. Throttle mengatur aliran BBM ke ruang bakar sedangkan mixture mengatur campuran udara dan BBM-nya.

    Spoiler untuk Sistem pengapian :

    Sistem ini berfungsi memantik busi yang membakar campuran BBM dalam silinder. Terdiri dari magneto, busi, kabel busi dan saklar pengapian.

    Magneto adalah komponen yang menghasilkan listrik ke busi, digerakkan putaran crankshaft & mandiri karena tidak ikut sistem kelistrikan agar tetap bekerja walau sistem listrik pesawat mati. Satu silinder disuplai oleh dua busi yang dipantik oleh dua magneto. Busi ganda ini selain berfungsi saling mendukung / mendongkrak putaran mesin juga backup jika salah satunya mati. Pada dunia otomotif magneto lazim digunakan pada skuter Vespa atau Bajaj tahun baheula yang tidak dilengkapi aki / batere penyimpan.

    Saklar pengapian magneto terletak pada panel instrumen, saklar ini memiliki 4 atau 5 posisi yaitu off, right, left, both. Ada juga yang menambah posisi start pada saklar. Jika posisi saklar di left atau right hanya salah satu magneto yang bekerja sedangkan both untuk kedua magneto. Biasanya penerbang harus memeriksa kerja magneto sebelum masuk ke landasan (runway) di tempat run up area.

    Pada engine run up kerusakan magneto bisa dirasa dengan indikasi turunnya RPM yang terlampau jauh, sedangkan penurunan RPM yang sedikit adalah normal. Namun harus kembali dilihat berapa RPM yang normal menurut Pilot Operating Handbook (POH) / AOM (Aircraft Operation Manual) pesawat masing-masing. Kerusakan biasanya diakibatkan oleh busi rusak atau kotor, hubungan pendek kabel busi, atau juga kesalahan waktu pengapian.

    Biasanya sistem pengapian jarang rusak namun harus tetap diwaspadai masalah yang berhubungan dengan magneto. Karena magneto tidak butuh arus baterai / aki untuk pengapian berhati-hatilah, Anda harus ekstra waspada. Karena mesin bisa sewaktu-waktu hidup jika baling-baling tak sengaja terputar kala Anda lupa mematikan saklar magneto dan throttle + mixture tidak ditutup (handpropping). Satu lagi tanda kerusakan magneto adalah derau (noise) pada radio komunikasi, ini akibat kabel yang longgar atau juga isolator kabel pengapian yang terkelupas.

    Spoiler untuk Sistem induksi :

    Induksi adalah proses memasukkan udara luar kedalam mesin, mencampurnya dengan BBM pada proporsi yang tepat dan dibawa kedalam ruang bakar. Sangat penting untuk dipahami pentingnya kontinuitas proses ini maka Anda harus mengetahui tepat sistem yang ada pada pesawat Anda.

    Udara luar masuk sistem ini lewat lubang masuk (intake port), yang ada di depan mesin. Lubang ini biasanya diberi penyaring hawa (air filter) untuk mencegah masuknya debu dan KOBA (Kerusakan Oleh Benda Berbahaya) / FOD (Foreign Object Damage). Untuk menghindari masalah jika tersumbat maka ada lubang cadangan, yang biasanya ada di dalam lubang pendingin mesin (engine cowling), lubang ini ada yang bekerja manual juga ada yang otomatis terbuka saat lubang masuk tersumbat. Tersumbatnya lubang masuk utama ditandai dengan turunnya RPM yang lumayan besar.

    Di karburator udara masuk bercampur dengan BBM dan masuk ke ruang bakar. Pada pesawat kecil umumnya menggunakan karburator yang mirip mobil yaitu karburator dengan pelampung. Cara kerjanya melalui venturi, udara yang melewati venturi ini bertambah kecepatannya dan berkurang tekanannya. Kondisi ini membuat BBM di penampungan masuk karburator dan bercampur sesuai yang diinginkan. Isi tampungan BBM ini dikendalikan oleh sebuah pelampung berventilasi keluar yang membuat tekanan di dalamnya sama dengan tekanan atmosfir luar baik saat pesawat naik dan turun.

    Karburator disetel pada sea level, kemudian rasio campuran udara dan BBM yang tepat di setiap ketinggian diatur oleh pengendali mixture. Karena jika ketinggian bertambah udara semakin renggang maka jumlah campuran BBM juga harus dikurangi (lean). Untuk mendapat campuran yang tepat pada setiap pesawat Anda harus melihat di POH / AOM.

    Penyesuaian mixture harus dilakukan setiap perubahan ketinggian, jika campuran terlalu kaya maka mesin akan terdengar kasar, hal ini disebabkan busi yang kotor karena endapan karbon berlebih. Busi kotor menyebabkan pembakaran yang tidak sempurna, biasanya terjadi di bandara dengan elevasi tinggi saat Anda runup. Bisa juga terjadi saat pesawat menanjak atau bahkan saat jelajah tinggi. Kembali Anda harus melihat POH untuk mendapat campuran yang pas.

    Sebaliknya jika anda lupa menambah rich pada mixture saat turun, campuran akan terlampau miskin BBM. Ini akan membuat mesin kepanasan dan aus bahkan bisa membuat mesin macet. Jalan terbaik memonitornya dari EGT (panas knalpot) juga menyesuaikan dengan POH.

    Spoiler untuk Carburetor icing :

    Kondisi ini akibat penurunan mendadak suhu karburator, efek dari penguapan BBM disertai penurunan tekanan pada venturi. Pada kelembaban tinggi uap air berkondensasi ditambah suhu karburator yang ≤ titik beku, es akan terbentuk dipermukaan dalamnya termasuk katup throttle. Carburetor icing bisa terjadi saat hari panas 380 C dan kelembaban 50% sekalipun, tapi paling mudah terjadi pada suhu < 210 C dan kelembaban nisbi 80%. Pokoké mangkin turun suhu dan mangkin tinggi kelembabannya mangkin tinggi kemungkinan carburetor icing. Tapi lucunya < titik beku, mangkin turun suhunya mangkin kecil kemungkinan carburetor icing.

    [Nyalakan carburetor heat jika curiga ada icing]
    Selain hal yang tertulis diatas harus diwaspadai juga setiap mengurangi throttle saat turun atau di traffic pattern bisa terjadi carburetor icing, hal ini berbahaya karena tak terasa kecuali saat open power kala harus go around.

    Mengatasi carb ice adalah dengan membelokkan udara ke sumber panas sebelum masuk ke karburator yang dikendalikan tombol carburetor heat. Biasanya udara dipanaskan melewati tabung knalpot (muffler). Suatu kebiasaan baik apabila menghidupkan carb heat setiap mengurangi throttle, hanya saja harus diperhatikan bahwa carb heat akan sedikit mengurangi RPM dan menaikkan suhu mesin.

    Tenaga dan RPM mesin berkurang karena udara yang panas berkurang kepadatannya sekaligus memperkaya campuran. Jika mengalami carb ice saat terbang dengan fixed pitch akan mengalami penurunan RPM kemudian akan normal kembali seiring es mencair saat carb heat dihidupkan. Sebaliknya saat tidak carb icing, RPM akan turun sedikit kemudian konstan. Hanya saja harus diingat saat anda menerbangkan constant speed propeller referensi Anda adalah manifold pressure.

    Spoiler untuk Sistem injeksi dan turbocharge :

    Injeksi BBM dan turbocharge adalah sistem yang lazim digunakan pada pesawat high performance. Injeksi lebih presisi pada pengukuran konsumsi BBM (fuel flow meter) ketimbang karburator, selain itu juga pengkabutan dan distribusi BBM ke setiap silinder lebih merata. Keuntungannya adalah lebih irit dan bertenaga, suhu mesin lebih rendah sehingga mesin lebih awet. Carb icing juga jarang ditemui pada sistem ini namun prosedur menghidupkannya juga sedikit ribet ketimbang sistem karburator, terutama saat mesin panas. Namun turbocharge memberi ‘nafas lebih panjang’ untuk terbang lebih tinggi dan tenaga yang lebih besar pada mesin kapasitas silinder (cc) yang sama.

    Pada ketinggian, efesiensi mesin piston berkurang seiring renggangnya udara walau volume udara masuk tetap. Mengatasinya dengan sistem turbocharge, dimana campuran BBM dan udara dipampatkan (compressed) sehingga mesin dapat beroperasi lebih tinggi lagi dan menghasilkan tenaga setara saat dipermukaan laut (sea level). Hanya saja mesin turbocharge yang biasanya juga injeksi memiliki parameter yang kompleks, memerlukan perhatian dan pengaturan mixture yang tepat. Karena kerjanya yang unik itulah diperlukan sedikit pelatihan sebelum menerbangkannya.

    Spoiler untuk Sistem pelumasan :

    Sistem ini memiliki dua fungsi penting, selain melumasi onderdil yang bergerak juga mendinginkan dan membuang panas mesin.

    Sebelum terbang Anda harus yakin jumlah pelumas cukup dan jenis pelumas harus sesuai dengan rekomendasi pabrik. Jenis yang digunakan harus disesuaikan dengan kondisi sekitar daerah operasional pesawat.

    Pada panel ada dua petunjuk pelumas yaitu suhu pelumas dan tekanan pelumas untuk setiap mesin. Jika tekanan pelumas di bawah garis normal berarti pelumas tidak dipompa cukup untuk bersirkulasi ke seluruh mesin, sedangkan jika tekanan melewati batas berarti ada saluran yang tersumbat. Harus diwaspadai semua kondisi abnormal diatas karena akan banyak onderdil vital yang tidak terlumasi. Jika mengalami hal ini segera ikuti POH pesawat Anda. Umumnya POH merekomendasikan mematikan mesin segera apabila tekanan pelumas tidak cukup setelah 30 detik mesin hidup.


    [matikan mesin jika tekanan oli tidak naik dalam 30 detik]
    Sedangkan petunjuk suhu pelumas biasanya berdampingan dengan tekanan pelumas untuk memudahkan mengawasinya secara bersamaan. Petunjuk suhu berubah gradual seiring naiknya suhu, sedang petunjuk tekanan pelumas akan langsung naik. Anda harus memeriksa suhu pelumas secara periodik, terutama jika Anda memakai high power setting. Petunjukan yang abnormal dapat berarti penyumbatan atau berkurangnya jumlah pelumas atau kesalahan pengukuran.

    Spoiler untuk Sistem pendingin :

    Pembakaran menghasilkan panas dan sistem pelumasan menekan pemanasan berlebih dalam silinder, namun perlu tambahan pendingin untuk membuang panas mesin agar mesin tetap bersuhu normal. Sebagian panas dibuang bersama gas buang namun tetap diperlukan udara luar untuk pendinginan. Pengukur suhu silinder (Cylinder Heat Temperature) menunjukkan suhu langsung dari sebuah silinder, gunanya agar penerbang bisa tahu kapan cowl flaps harus dibuka agar mesin cepat dingin. Biasanya harus dibuka saat didarat, karena aliran udara tidak cukup untuk pendinginan atau saat terbang lambat dengan high power setting. Selain dengan cowl flaps suhu bisa langsung diturunkan dengan memperkaya campuran, melandaikan sudut tanjak, menaikkan kecepatan dan bila kondisi mengijinkan menurunkan power setting.


    Spoiler untuk Baling-baling :

    Walaupun mesin menghasilkan tenaga namun baling-baling lah yang mendorong pesawat maju. Baling-baling ini terdiri dari dua atau lebih bilah yang dihubungkan ke porosnya. Setiap bilah adalah airfoil yang bertindak seperti sayap yang berputar karenanya faktor-faktor aerodinamika yang mempengaruhinya sama dengan airfoil.

    Baling-baling berputar menciptakan tekanan rendah didepannya, seperti sayap yang membuat tekanan rendah diatasnya. Hanya tidak seperti sayap yang melaju rata, baling-baling ini bergerak lebih cepat diujung ketimbang dipangkalnya. Untuk mengatasinya sudut bilah dibuat berbeda antara pangkal dan ujungnya, karenanya bilah terlihat terpilin. Bilah seperti ini membuat sudut serang yang cukup rata dan thrust-nya dekati seragam pada tiap titik.

    Sudut bilah mempengaruhi efesiensi, contohnya bilah bersudut kecil baik saat menanjak tetapi jelek untuk jelajah dan kecepatan. Namun yang bersudut besar jelek untuk menanjak tapi bagus untuk kecepatan dan ketinggian jelajah tinggi.


    Fixed pitch
    Pesawat ringan memiliki baling-baling fixed pitch atau constant speed, pada fixed pitch sudut bilah dipilih sesuai kebutuhan pemilik dan fungsi pesawatnya. Misalkan ingin bermanuver cepat maka pilihlah bilah yang bersudut kecil sebaliknya jika menginginkan kecepatan dan ketinggian pilihlah yang bersudut besar. Untuk memudahkan membayangkannya, bilah tetap (fixed pitch) bekerja seperti sepeda onthel mBah yang hanya punya satu gigi kayuh (onthelan) dan satu gigi roda.


    Constant speed
    Dibanding dengan fixed pitch, constant speed lebih efisien. Sering disebut variable pitch karena penerbang bisa merubah sudut bilah untuk efisiensi. Keunggulan model bilah ini bisa merubah tenaga mesin menjadi dorongan sesuai dengan kombinasi RPM dan kecepatan. Constant speed bisa dibandingkan dengan sistem transmisi pada mobil, dimana putaran mesin dikonversi ke putaran roda sesuai dengan kebutuhan misalnya menanjak, menurun, jalan pelan atau cepat.

    Pada mobil, untuk menanjak, kecepatan rendah atau akselerasi kita menggunakan gigi rendah yang berdiameter besar, maka di pesawat kita menggunakan setting bilah bersudut kecil sehingga dapat menanjak, mengerem laju pesawat saat turun atau mendarat (fine pitch). . Sebaliknya pada mobil saat kita ingin mendapat kecepatan yang tinggi maka kita menggunakan gigi tinggi yang berdiameter lebih kecil maka pada pesawat kita menggunakan bilah bersudut besar sehingga kita mendapat dorongan yang besar pula.

    Sudut bilah digerakkan oleh governor (semacam kopling hidrolik) yang mengatur tekanan oli untuk menjaga kesetimbangan antara aerodinamika dan daya perubah sudut pada putaran yang kita inginkan. Hanya saja tiap putaran mesin ada maksimum tekanan manifol yang diijinkan, sebab jika mesin dipaksa melampaui batas ini akan menyebabkan beban berlebih pada mesin. Setting harus dilihat pada POH / Manual tiap pesawat. Namun yang pasti Anda harus menghindari menggunakan tekanan manifol tinggi pada putaran mesin rendah.


    Bahaya baling-baling
    Baling-baling adalah bagian yang paling berbahaya sebuah pesawat, dan harus ekstra diwaspadai. Anda harus memberi penyuluhan pada penumpang mengenai bahaya baling-baling dan cara menghindarinya. Tekankan pada mereka untuk sedapat mungkin jauh dari baling-baling.

    Kadang-kadang Anda harus memutar baling-baling untuk menghidupkan mesin (handpropping) atau untuk inspeksi pra terbang. Namun harus dilakukan dengan prosedur yang ketat karena dapat membahayakan diri Anda jika dilakukan sembarangan. Yakinkan bahwa ada pilot qualified untuk mengontrol, dan seseorang sedang memutar bilah pesawat Anda.


    Spoiler untuk EFEK KETINGGIAN PADA TEKANAN ATMOSFIR :

    Jika ketinggian meningkat maka tekanan akan berkurang, karena berat udara akan berkurang. Sebagai rata-rata setiap kali ketinggian meningkat 1000 kaki maka tekanan atmosfir akan berkurang 1 in.Hg. Pengurangan ini (peningkatan density altitude, ketinggian diukur dari kerapatan udara) mempunyai pengaruh besar pada kinerja (performance) pesawat.

    [Jarak Take off bertambah seiring dengan peningkatan ketinggian]

    EFEK KETINGGIAN PADA PENERBANGAN
    Ketinggian mempengaruhi setiap aspek penerbangan dari pesawatnya sendiri dan kinerja manusia. Do tempat yang tinggi, dimana tekanan atmosfir berkurang, jarak untuk lepas landas dan mendarat akan bertambah, begitu juga kemampuan untuk mendaki akan berkurang.

    Sewaktu pesawat lepas landas, gaya lift harus dikumpulkan dengan aliran udara di sekitar sayap. Jika udaranya tipis, maka pesawat butuh bergerak lebih cepat lagi untuk mendapatkan lift yang cukup untuk terbang, maka pesawat butuh landasan yang lebih panjang. Sebuah pesawat yang membutuhkan landasan sepanjang 1000 kaki di ketinggian yang sama dengan permukaan laut, akan membutuhkan hampir dua kali lipat pada landasan yang mempunyai ketinggian 5000 kaki. Juga pada ketinggian yang lebih tinggi, dikarenakan berkurangnya kerapatan udara, maka efisiensi mesin pesawat dan baling-baling akan berkurang. Ini akan mengakibatkan pengurangan rate of climb (kemampuan mendaki) dan landasan yang lebih panjang untuk lepas landas dan menghindari halangan (obstacle) yang ada di darat.

    EFEK DARI PERBEDAAN KERAPATAN UDARA
    Perbedaan kerapatan udara karena perbedaan suhu mengakibatkan perbedaan tekanan. Hal ini akan diikuti oleh pergerakan dalam atmosfir, vertikal dan horisontal, dalam bentuk arus dan angin. Pergerakan dalam atmosfir, digabungkan dengan kandungan uap air (moisture) menghasilkan awan dan precipitation (salju, hujan dll) yang kita sebut cuaca.

    ANGIN
    Perubahan tekanan dan suhu menghasilkan 2 jenis pergerakan dalam atmosfir, pergerakan vertikal dari arus naik dan turun, serta pergerakan horisontal dalam bentuk angin. Kedua tipe pergerakan ini sangat penting, karena keduanya mempengaruhi lepas landas, mendarat, dan pengoperasian jelajah pesawat. Lebih penting lagi bahwa pergerakan ini di atmosfir, yang disebut sirkulasi atmosfir, menyebabkan perubahan cuaca


    Spoiler untuk Cara kerja Helikopter :

    Helikopter adalah sebuah pesawat yang mengangkat dan terdorong oleh satu atau lebih rotor (propeller) horizontal besar. Helikopter diklasifikasikan sebagai pesawat sayap-berputar untuk membedakannya dari pesawat sayap-tetap biasa lainnya. Kata helikopter berasal dari bahasa Yunani helix (spiral) dan pteron (sayap). Helikopter yang dijalankan oleh mesin diciptakan oleh penemu Slovakia Jan Bahyl.

    Dibandingkan dengan pesawat sayap-tetap lainnya, helikopter lebih komplex dan lebih mahal untuk dibeli dan dioperasikan, lumayan lambat, memiliki jarak jelajah dekat dan muatan yang terbatas. Sedangkan keuntungannya adalah gerakannya; helikopter mampu terbang di tempat, mundur, dan lepas landas dan mendarat secara vertikal. Terbatas dalam fasilitas penambahan bahan bakar dan beban/ketinggian, helikopter dapat terbang ke lokasi mana pun, dan darat di mana pun dengan lapangan sebesar rotor dan setengah diameter. Landasan helikopter disebut helipad.

    Spoiler untuk Prinsip Kerja :

    Helikopter bisa terbang karena gaya angkat yang dihasilkan oleh aliran udara yang dihasilkan dari bilah-bilah baling-baling rotornya. Baling-baling itu yang mengalirkan aliran udara dari atas ke bawah. Aliran udara tersebut sedemikian deras sehingga mampu mengangkat benda seberat belasan ton. Teorinya sebenarnya cukup sederhana namun prakteknya rumit.

    Spoiler untuk Airfoil :

    Pada dasarnya, prinsip dasar terbang dari pesawat bersayap tetap (fixed wing) dengan helikopter yang dikenal juga pesawat bersayap putar pada dasarnya tetap. Kuncinya ada pada dua kekuatan besar yang bekerja terpadu, menghasilkan gaya angkat dan daya dorong yang besar.

    Pada pesawat bersayap tetap Kekuatan pertama dihasilkan oleh aliran udara di permukaan sayapnya yang membentuk sudut datang tertentu dengan flap yakni sayap kecil di belakang sayap yang posisinya ditegakkan. Sehingga aliran udara mengalir deras ke belakang bisa diarahkan balik ke atas. Udara yang mengalir di permukaan sayap bagian bawah menekan permukaan sayap yang relatif datar itu ikut menekan ke atas menimbulkan gaya angkat dan menyebabkan pesawat terangkat ke atas. Paling kurang 15 persen dari seluruh gaya yang dihasilkan, dipergunakan untuk mengangkat badan pesawat ke atas.

    Kekuatan besar lainnya adalah gaya dorong yang dihasilkan aliran udara yang ada di permukaan sayap bagian atas yang bentuknya relatif lengkung. Ketika aliran udara yang dihasilkan oleh mesin mengalir ke belakang dan melalui sayap utama maka aliran udara itu terpecah. Aliran udara yang mengalir di atas permukaan sayap bagian atas lebih deras dari aliran udara yang menerpa di permukaan sayap bagian bawah. Tetapi tekanan udara yang mengalir deras di atas permukaan sayap atas, relatif lebih kecil dibanding dengan tekanan udara di permukaan sayap bagian bawah yang justru alirannya kurang deras. Perbedaan tekanan udara ini yang menyebabkan sayap pesawat terangkat ke atas. Untuk membayangkan seberapa besar gaya angkat itu, secara teori menyebutkan bahwa perbedaan tekanan udara sebesar 2.5 ounce per inci persegi dapat menghasilkan gaya angkat 20 pound per kaki persegi ( 1 kaki = 20 cm). Bisa dihitung, kalau luas sayap pesawat 1000 kaki persegi maka gaya angkat yang dihasilkan akan mencapai 10 ton.

    Pada helikopter, fungsi sayap digantikan oleh baling-baling yang setiap baling-balingnya meski berukuran lebih kecil dari sayap pesawat biasa, namun ketika diputar, curvanya relatip sama dengan sayap pesawat. Untuk mendapatkan gaya angkat, baling-baling rotor harus diarahkan pada posisi tertentu sehingga dapat membentuk sudut datang yang besar. Prinsipnya sama dengan pesawat bersayap tetap, pada helikopter ada dua gaya besar yang saling memberi pengaruh. Aliran udara yang bergerak ke depan baling-baling menekan baling-baling sehingga bilah baling-baling terdorong balik ke belakang menghasilkan suatu gaya angkat kecil. Tetapi ketika ketika aliran udara bergerak cepat melewati bagian atas dan bawah bilah-bilah baling-baling, tekanan udara yang besar diantara baling-baling otomatis akan mengembang ke seluruh permukaan yang bertekanan lebih rendah, menyebabkan baling-baling terdorong ke atas dan helikopterpun terangkat. Yang perlu diingat, meski bilah-bilah baling-baling itu hanya beberapa lembar, namun dalam keadaan berputar cepat, ia akan membentuk suatu permukaan yang rata dan udara yang menekannya ke atas menimbukan tekanan besar yang akhirnya menghasilkan gaya angkat yang besar pula. Prinsip ini sama dengan fungsi propeler pada pesawat bermesin turboprop dan sama pula dengan "kitiran" mainan anak-anak itu.

    Beberapa helikopter yang digunakan dalam perang, seperti Mi-26 Hind misalnya dilengkapi dengan sayap kecil yang disebut canard, fungsi pertamanya untuk meringankan beban rotor utama dan yang kedua untuk meningkatkan laju kecepatan dan memperpanjang jangkauan jelajah. Fungsi lain adalah sebagai gantungan senjata, rudal dan lain-lainnya. Dengan menambahkan sayap pendek ini, maka perbedaan fungsional antara pesawat tetap dengan helikopter menjadi samar. Pesawat bersayap tetap juga ada yang mampu terbang-mendarat secara vertikal (Vertical Take-off Landing/VTOL). Contonya, Harrier dari jenis Sea Harrier atau AV-8 Harrier.

    Kelebihan pesawat bersayap tetap, terutama soal terbangnya karena pesawat berjenis ini memiliki platform yang lebar sehingga relatif lebih stabil saat melakukan penerbangan. Soal menerbangkannya, itu persoalan mengatur kemudi guling pada sayap dan stabilizer tegak dan datar yang ada pada ekornya. Tetapi pada Helikopter tidaklah demikian. Ketika bilah-bilah baling-baling rotornya menghasilkan gaya angkat rotornya sendiri sendiri bekerja memindahkan udara di atasnya ke bawah sebanyak banyaknya. Disaat itu berat udara yang dipindahkan mengurangi berat helikopter sehingga helikopter itu terangkat. Dan bila helikopter itu terangkat, berarti terjadi keseimbangan berat antara udara yang dipindahkan dari atas ke bawah dengan bobot helikopternya. Untuk mengoperasikan helikopter itu ada alat kemudi yang biasa disebutcollective pitch dan cyclic pitch masing-masing berfungsi sebagai pengatur gaya angkat dan pendorong helikopter untuk melaju ke depan. Begitu sederhana cara kerjanya, tetapi mentransformasikannya dalam sebuah teknologi sungguh pekerjaan yang sangat rumit.

    Spoiler untuk Tail rotor :

    Begitu pula halnya dengan konfigurasi rotor, bukan hanya sekedar bisa berputar lalu terbang dan mengambang. Sebab setap baling-baling diputar akan selalu menimbulkan tenaga putaran yang disebut dengan istilah umum torque. Untuk menghilangkan atau menangkal tenaga putar yang bisa menyebabkan badan helikopter itu berputar, maka perlu dipasang antitorque.

    Antitorque ini dapat berupa tail rotor atau rotor ekor yang dipasang pada ekor pesawat yang juga berfungsi sebagai rudder. Konfigurasi ini dapat dilihat pada helikopter umumnya seperti Bell-412, Bell-205 atau UH-1 Huey, atau NBO-105, dan AS-330 Puma atau AS-335 Super Puma, AH-64 APACHE atau Mi-24 HIND. Selin menggunakan tail rotor, masih ada beberapa desai yang lain. Misalnya yang menggunakan sistem tandem seperti yang digunakan pada helikopter Boeing CH-47 Chinook atau CH-46 Sea Knight. Kedua rotor tersebut yang bersama-sama berukuran besar masing-masing ditempatkan di depan dan di belakang badan helikopter. Keduanya simetris namun memiliki putaran yang berlawanan arah . Maksudnya untuk saling meniadakan efek putaran yang ditimbulkan satu sama lain, intermesh dalam bahasa populernya. Cara lain adalah dengan konfigurasi egg-beater. Konfigurasi rancang bangun seperti ini digunakan pada helikopter Ka-25 Kamov buatan Rusia atau Kaman HH-43 Husky. Kedua baling-baling yang sama besarnya itu diletakkan dalam satu poros, terpisah satu sama lain dimana yang satu diletakkan diatas rotor lainnya. Keduanya berputar berlawanan arah. Maksudnya untuk menghilangkan efek putaran atau torque.

    Selain ketiga cara diatas, dibuat juga konfigurasi tanpa rotor ekor. Helikopter ini desebut NOTAR (No Tail Rotor) ini memiliki sistem yang sedikit berbeda dengan sistem yang ada dimana memanfaatkan semburan gas panas dari mesin utama yang disalurkan melalui tabung ekor. Contohnya adalah helikopter MD-902 Explorer.

    Spoiler untuk Rotor Aktif atau Tilt Rotor dan Sayap Aktif atau Tilt Wing :

    Tinggal landas dan mendarat ala helikopter tetapi berkarakter terbang macam pesawat bersayap tetap merupakan konsep yang dianut oleh helikopter jenis ini. Cara paling mudah adalah menggabungkan konsep kerja pesawat helikopter dengan pesawat bersayap tetap dalam satu wujud.

    Prinsip kerjanya secara teknis bila rotor utama diarahkan ke atas maka gerakan vertikal yang dilakukan helikoter dapat dilakukan sedangkan saat rotor diarahkan ke depan atau ke belakang (sebagai pursher atau pendorong) maka karakter terbang seperti pesawat tetap dapat diperoleh. Gerakan rotor seperti ini tidak perlu melibatkan sayap.

    Sebenarnya pengembangan rotor aktif ini masih diliputi kegamangan, masalahnya adalah sistem tadi bisa saja disebut pesawat bersayap tetap karena memiliki sayap yang berlumayan besar, sekaligus memiliki ekor pesawat yang berkonfigurasi dengan pesawat bersayap tetap biasa. Akhirnya konsep ini disebut dengan konsep hybrid. Contoh helikopter ini adalah V-22 Osprey. Selain konsep rotor aktif, ada pula konsep sayap aktif, dimana yang digerakkan bukanlah rotor seperti pada rotor aktif melainkan sayap pesawatnya. Sementara mesin tetap pada kedudukannya. Contoh helikopter ini adalah TW-68 yang dirancang oleh Ishida Corporation, Jepang, Rancangan ini disebut-sebut sebut sebagai memiliki rancangan yang lebih ringkas dibandingkan dengan rotor aktif hanya sayangnya keberlanjutannya tidak begitu terdengar.

    Spoiler untuk Kursi Lontar pada Helikopter :

    Dibandingkan pada pesawat biasa khususnya pesawat tempur, pesawat helikopter umumnya tidak dilengkapi dengan kursi lontar. Hal ini disebabkan karena masalah menghadapi rotor helikopter saat meluncurkan kursi lontar sekaligus umumnya helikopter terbang lebih rendah sehingga lebih rentan. Namun demikian pada helikopter Rusia, Kamov Ka-50 Hokum yang menggunakan kursi lontar yang dirancang khusus seperti Zvesda K-37-800. Langkah kerjanya adalah ketika kursi lontar diaktifkan, maka rotor diledakkan dan lepas dari kedudukannya, kemudian kedua sisi atas kaca kokpit membuka dan roket penarik aktif yang menarik pilot dan kirsinya keluar dari badan heli. Meski dirasa rumit, Helikopter masa depan akan dilengkapi dengan kursi lontar.


    Spoiler untuk Penemuan Helikopter :

    Sebenarnya, perjalanan helikopter menjadi bentuk yang dikenal pada saat ini memakan kurun waktu yang cukup panjang. Dalam perjalanannya, juga melibatkan perkembangan teknologi dan juga para penemu serta pengembang helikoter.

    Helikopter pertama yang menerbangkan manusia adalah Helikopter Breguet-Richet, tahun 1907. Heli ini terbang di Douai, Perancis pada 29 September 1907. Helikopter ini masih memperoleh bantuan dari empat orang yang memegangi keempat kakinya. Upaya ini tidak memperoleh catatan baik sebagai helikopter pertama yang terbang bebas. Walaupun demikian, helikopter ini membuktikan keberhasilan teori terbang vertikal yang saat itu masih dianggap sebagai teori. Ini merupakan mesin pertama yang bisa terbang dengan sendirinya membawa seorang pilot secara vertikal sebagai akibat daya angkat sayap putarnya. Heli ini menggunakan mesin Antoinette berkekuatan 50 hp.

    Terbang heli sesungguhnya dilakukan oleh Paul Cornu menggunakan heli bermesin ganda Antoinette 24 hp di Lisieux, Perancis pada 13 November 1907. Penerbangan berlangsung 20 detik hingga ketinggian 0,3 Meter. Sedangkan Helikopter berjenis Gyroplane pertama diraih oleh C4 Autogiro buatan Juan de la Cierva. Autogiro terbang pertama pada 9 Januari 1923]]. Rahasia sukses pada pengadopsian sistem flapping hinges joint the blades to the rotor head. Sementara helikopter yang sukses terbang pertama dilakukan oleh jenis Fock Wulf FW-61 berotor ganda yang didesain oleh Professor Heinrich Focke pada tahun 1933-1934. Helikopter ini melakukan terbang perdananya pada 26 Juni 1936 dan ditenagai oleh mesin Siemens-Halske Sh 14A bertenaga 160 hp. Heli ini diterbangkan oleh Ewald Rohlfs. Heli ini mencatat rekor terbang sejauh 122,35 km dan lama terbang satu jam 20 menit 49 ******* Pada waktu lain ia terbang hingga ketinggian 3427 meter dan rekor kecepatan 122 km/jam.

    Spoiler untuk Pionir pengembang teknologi Helikopter :

    Leonardo da Vinci (1452-1519)
    Leonardo da Vinci sebenarnya mengembangkan konsep terbang vertikal yang sebelumnya merupakan mainan anak-anak dari dataran ****, tidak jelas sebenarnya sejak kapan mainan anak-anak ini dikembangkan disana dan siapa inisiatornya atau penemunya. Pada tahun 1483 Leonardo da Vinci mengembangkan konsep sekrup terbang.

    Sir Goerge Cayley (1773-1857)
    Sir George Cayley dikenal sebagai insinyur dan inovator dalam navigasi udara dan aerodinamika. Salah satu yang dikenalkannya adalah istilah angle of attack dalam dunia penerbangan. Dalam sejarah, dia merupakan sosok yang mengembangkan pesawat sayap tetap dan pesawat layang atau glider namun demikian dia mengembangkan sayap putar atau helikopter. Helikopter yang diperkenalkannya merupakan kompilasi dari bahan kayu, bulu, gabus dan kawat.

    Pada 1842, Cayley mendesain helikopter lebih baik , khususnya ketika mengetahui bahwa putaran baling-baling dapat menimbulkan petaka sehingga memerlukan penangkalnya. Teori penangkal ini juga dikemukakan olehnya. Agar bisa terbang, helikpter ini menempatkan dua rotor yang bergerak berlawanan arah. Meski helikopter rancangannya belum berwujud dengan helikopter yang mengudara, konsep helikopternya dipakai oleh Kamov dari Rusia dan Focke dari Jerman.

    Nikolai Egorovich Zhikovsky (1847-1921)
    Zhukovsky mengawali karier di dunia penerbangan dengan menekuni matematika, hidrodinamika dan aerodinamika. Zhukovsky kemudian menemukan terowongan angin pertama di dunia untuk menguji teknologi aerodinamika. Terjun dalam pengembangan helikopter pada tahun 1910 dan pada Perang Dunia I mengembangkan banyak pesawat terbang dan helikopter.

    Juan de la Cierva (1895-1936)
    Cierva mengembangkan helikopter setelah pesawat pembom bersayap ganda buatannya jatuh pada tahun 1919, alasannya adalah kestabilan helikopter dianggapnya lebih tinggi. Dalam membangun rancangan helikopternya, Cierva mengabaikan berbagai teori yang berkembang sebelumnya, dengan menggunakan rancangan-rancangan baru buatannya yang didasarkan pada teori yang dikembangkannya lewat berbagai eksperimen. Hasinya adalah Autogiro yang merupakan konsep pesawat gado-gado antara pesawat terbang umumnya sehingga bisa melakukan terbang landas secara vertikal, yang setengah pesawat terbang dan setengah helikopter. Autogiro Cierva terbang pada 1923. Lima tahun kemudian Cierva melakukan penerbangan keliling Eropa dengan Autogiro sejauh lebih dari 5000 km seraya berpromosi. Upayanya tidak sia-sia karena Autogiro rancangannya banyak diminati sejumlah industri di Eropa. Cierva meninggal dalam kecelakaan Autogiro di Croydon pada tahun 1936.

    Igor Ivanovich Sikorsky (1889-1972)
    Sikorsky menaruh minat pada penerbangan dengan merancang berbagai pesawat model diantaranya berupa helikopter sejak usia dini. Pada awalnya dia masuk Naval Academy di St. Petersburg yang kemudian mengundurkan diri dan pergi ke Paris untuk mendalami ilmu teknik dan penerbangan. Setelah dari Paris, dia kembali ke Kiev, Ukraina dan mengembangkan helikopter namun gagal. Revolusi Bolshevik memaksa Sikorsky hijrah ke Paris dan selanjutnya menetap di Amerika Serikat.

    Pada tahun 1939 dia menerbangkan helikopter pertamanya VS-300 dan selama pengembangannya, helikopternya mencatat berbagai rekor penerbangan. Sampai memasuki abad ke-21 ada sekitar 40.000 helikopter buatan Sikorsky terbang diberbagai belahan dunia ini.

    Mikhail Mill (1909-1970)
    Seperti halnya Sikorsy, Mill menaruh minat pada penerbangan diusia dini. Dia memenangkan kompetisi pesawat model pada usia 12 tahun. Ia kemudian masuk ke Insitut Aviasi di Novocherkassk dan mengembangkan autogiro pertamanya dengan pengawasan dan bimbingan Kamov dan Skrzhinsky. Setelah lulus pada 1931, dia masuk ke pusat aerodinamika Rusia TsAGi, dan disinilah melakukan penelitian pada aerodinamika helikopter dengan penekanan pada stabilitas dan desain rotor.

    Pada tahun 1947, Mil diangkat menjadi kepala desain helikopter yang baru dan memunculkan helikopter GM-1 yang dikenal menjadi Mi-1 Hare. Sukses Hare menuntun pengembangan helikopter selanjutnya yang sangat terkenal seperti Mi-4, Mil Mi-6 Hook, Mi-8 dan lain-lain.

    Yum Soemarsono (1916-1999)
    Yum Soemarsono dikenal sebagai bapak helikopter Indonesia. Berbeda dengan penemu dan pengembang helikopter lainnya, dia mengembangkan helikopter sendiri berdasarkan pengalaman dan intuisi serta keterampilannya yang tidak diperoleh dari pendidikan tinggi. Rancangannya berupa Rotor Stabilizer dibuatnya hanya berdasarkan intuisi.

    Helikopter pertama rancangannya adalah RI-H yang selesai pada tahun 1948 namun tidak sempat diterbangkannya karena lokasi pembuatannya di Gunung Lawu dibom Belanda pada saat Revolusi Kemerdekaan Indonesia. Heli kedua adalah YSH yang dirancang bersama Soeharto dan Hatmidji, selesai pada tahun 1950 dan melayang setinggi 10 cm di lapangan Sekip Yogyakarta. Sementara Helikopter ketiga adalah Seomarcopter yang berhasil terbang ketinggian 3 meter sejauh 50 meter dengan mesin berdaya 60 hp pada 1954. Helikopter ke empat adalah Kepik yang ironisnya mengalami kecelakaan dan menyebabkan kehilangan tangan kirinya dan sekaligus menewaskan asistennya, Dali. Nama kepik sendiri adalah nama pemberian presiden Republik Indonesia pertama Soekarno.

    Kehilangan tangan kirinya membuatnya menemukan suatu alat yang dinamakan throttle collective device untuk mengganti tangan kirinya yang putus, sehingga penerbang cacat masih mampu menerbangkan helikopter. Alat ini digunakan untuk mengangkat dan memutar collective, salah satu kemudi yang terletak pada sisi kiri penerbang. Semula hanya didesain untuk helikopter jenis Hiller, namun kemudian dikembangkannya untuk dipakai pada helikopter Bell 47G dan Bell 47J2A, hadiah dari Solichin GP. Meski alat ini kemudian diminati oleh pabrik helikopter Bell di Amerika Serikat, tidak ada kejelasan selanjutnya mengenai pengembangan alat ini dan sekaligus juga hak patennya. Beliau meninggal pada 5 Maret 1999.



    Spoiler untuk turbulensi :

    Definisi turbulensi
    Aliran turbulen adalah salah satu fenomena fisik yang komplek dan menarik minat banyak peneliti. Leonardo da Vinci (1800 an) menggambarkan pusaran aliran air yang melalui suatu konfigurasi akan menghasilkan pusaran yang bersifat acak tetapi juga memiliki pola tertentu (Gambar 10. 1). Suatu aliran turbulen jika diberi injeksi (misalnya aliran udara yang diinjeksi asap, atau aliran air yang diinjeksi tinta) akan menunjukkan adanya pusaran yang kemudian dikenal sebagai Eddy (Gambar 10. 2). Ukuran Eddy sangat bervariasi, mulai dari yang besar (large scale Eddy) sampai yang berukuran kecil (small scale Eddy).

    (Gambar 10. 1 Lukisan Leonardo da Vinci yang menggambarkan aliran turbulen)
    Munculnya large scale Eddy dalam aliran menandakan bahwa aliran bersifat turbulen, tetapi tidak semua aliran turbulen menunjukkan adanya eddy. Small scale Eddy dalam aliran turbulen tidak dapat dilihat dengan mata telanjang.

    (Gambar 10. 2 Visualisasi ‘olakan Eddy’ dengan menggunakan asap)
    Walaupun kita dapat mengidentifikasi adanya turbulensi dalam aliran, tetapi kita tidak dapat mendefinisikan aliran turbulen secara tepat. Tennekes dan Lumley (1972) menyatakan bahwa aliran turbulen tidak dapat didefinisikan, tetapi dapat diidentifikasi berdasarkan sifat-sifat turbulensi. Beberapa sifat itu adalah:
    • Tidak beraturan
    Salah satu sifat aliran turbulen adalah tidak beraturan (random). Karena itu analisa aliran turbulen selalu menggunakan metode statistik.
    • Dispersif
    Aliran turbulen akan cenderung menyebar (dispersif). Sifat ini menyebabkan aliran turbulen memiliki kemampuan yang tinggi dalam proses pencampuran (mixing), perpindahan panas, perpindahan momentum dan perpindahan massa.
    • Disipatif
    Turbulen memiliki energi internal berupa pusaran besar (large scale Eddy) dan pusaran kecil (small scale Eddy). Energi pusaran besar didapat dari aliran utama (free stream) dan energi pusar kecil ditransfer dari pusaran besar. Proses ini dikenal sebagai energy cascade. Energi yang dikandung pusararan kecil akan melemah karena efek gesekan fluida akibat viskositas fluida. Untuk mempertahankan turbulensi, dibutuhkan suplai energi dari aliran utama. Hal ini yang menjelaskan kenapa kehilangan energi akibat gesekan pada aliran turbulen jauh lebih besar daripada aliran laminer.

    Gelombang permukaan air laut adalah fenomena fisik yang menyebar (dispersif) tetapi bukan merupakan aliran turbulen karena gelombang ini tidak bersifat disipatif. Hal ini yang menjelaskan kenapa gelombang tinggi akibat Tsunami di Aceh masih dapat menyebar sampai daerah India dan timur Afrika. Gelombang laut hanya akan terserap energinya ketika ia membentur pantai. Karena itu pecahnya gelombang laut di pantai merupakan fenomena turbulen.
    • Bilangan Reynolds yang tinggi
    Aliran turbulen selalu memiliki bilangan Reynolds yang tinggi. Nilai absolut dari bilangan Reynolds untuk turbulen selalu relatif terhadap konfigurasi aliran. Misalnya aliran eksternal akan memiliki bilangan Reynolds yang lebih tinggi daripada aliran internal. Tetapi nilai relatif bilangan Reynolds aliran turbulen selalu lebih tinggi daripada aliran laminer. Karena bilangan Reynolds merupakan rasio antara gaya inersia aliran dan gaya gesek, pengaruh
    gaya inersi pada aliran turbulen jauh lebih dominan dibandingkan dengan pengaruh gaya gesek. Salah satu contoh adalah tebal lapisan batas (boundary layer thickness) turbulen lebih tipis dibandingkan dengan aliran laminer.
    • Vortisitas tiga-dimensi
    Apapun konfigurasinya, aliran turbulen selalu memiliki vortisitas/ pusaran tiga dimensi. Pembentukan lapisan batas antara aliran dan dinding selalu berawal pada kondisi laminer. Vortisitas aliran laminer bersifat dua dimensi dari dinding ke arah freestream. Semakin ke arah hilir (down stream) lapisan batas akan mengalami transisi dan berubah menjadi turbulen. Transisi dari laminer ke turbulen merupakan mekanisme kompleks yang mengubah vortisitas laminer (dua dimensi) menjadi vortisitas turbulen (tiga dimensi).
    • Kontinum
    Aliran turbulen adalah bagian dari disiplin ilmu mekanika fluida. Dalam analisanya, mekanika fluida selalu menggunakan pendekatan bahwa fluida sebagai kontinum, suatu ukuran fluida yang jauh lebih besar dari ukuran molekul, tetapi lebih kecil dari ukuran partikel. Karena itu Eddy yang terkecil dalam turbulensi, ukuranya masih jauh lebih besar daripada ukuran molekul. 98
    • Aliran turbulen adalah suatu aliran.
    Karakter aliran turbulen tidak ditentukan oleh jenis fluida tetapi oleh karakter aliran itu sendiri. Turbulensi aliran pada fluida air dengan udara akan memiliki karakter yang sama jika memiliki bilangan Reynolds yang sama. Tegangan geser yang terjadi pada lapisan batas turbulen berasal dari viskositas fluida/viskositas molekuler (sifat molekuler fluida) dan viskositas turbulensi (sifat aliran). Viskositas turbulensi adalah efek viskositas yang
    ditimbulkan oleh Eddy dan pengaruhnya lebih dominan daripada viskositas molekuler.




    85 JAWABAN TURBULENSINYA BAGUS BANGET, TEORINYA ADA BANYAK THX PANITIA
    Last edited by Anbu-LoCk~rBN; 27-08-10 at 18:18.

  6. #66

    Join Date
    Sep 2009
    Location
    follow @JoyNathanK
    Posts
    5,969
    Points
    915.90
    Thanks: 529 / 467 / 325
    Default Category

    Default

    EVENT I DITUTUP SELAMA 2 HARI KEDEPAN UNTUK PERHITUNGAN HASIL DAN HADIAH THX PANITIA

  7. #67

    Join Date
    Sep 2009
    Location
    follow @JoyNathanK
    Posts
    5,969
    Points
    915.90
    Thanks: 529 / 467 / 325
    Default Category

    Default

    EVENT II DIBUKA , ENJOY THE EVENT

  8. #68

    Join Date
    Jul 2010
    Posts
    189
    Points
    0.20
    Thanks: 17 / 1 / 1

    Default

    Spoiler untuk Spa Bayi :
    Spa bayi secara khususakan menstimulasi motorik,meningkatkan kualitas tidur,dan relaksasi.
    Inn spj tidak hanya menjadi kebutuhan orang dewasa, tetapi bayi dan anak-anak pun mulai menyukai aktivitas yang penuh relaksasi itu. Tahapan spa untuk bayi juga tidak beda dengan orang dewasa, hanya saja semua diberikan dengan porsi dan fungsi yang disesuaikan dengan kebutuhan.

    "Sama dengan ibu hamil, bayi juga butuh relaksasi, tetapi tujuan utama dari spa bayi adalah mempererat hubungan emosional ibu dan bayi serta melatih motorik mereka," ujar Mirna Mirza-yanti, supervisor Mom n Jo Spa yang memberi layanan pijat dan spa untuk ibu hamil dan bayi. Inti dari layanan spa ini adalah pijat-an, karena selama proses pemijatan kepada Imm akan diberikan cairan dan minyak aromatlwmpy yang cocok untuk bayi masuk angin atau menghaluskan kulit dengan usapan minyak biji buah-buahan.

    "Ada minyak yang mengandung euca-lyptus untuk masuk angin dan minyak biji anggur dari Australia, sehingga bayi aman karena ada kandungan antialergi," ujar Mima yang biasa disana Ina. Supaya proses spa bayi lebih aman, sebelum dipijat bayi yang memiliki suhu tubuh sama dengan atau lebih dari i7 derajat Celsius tidak akan diizinkan mendapat terapi pijat atau spa.

    Setelah dipijat, terapi dilanjutkan dengan baby swim di kolam air hangat,di mana bayi akan berenang dengan menggunakan pelampung. Selain memiliki fungsi merendam, aktivitas di air ini untuk melatih fungsi tubuh.
    Semua aktivitas yang memerlukan waktu kurang lebih 40 menit ini bisa dilakukan bayi bersama dengan sang ibu, sehingga mereka akan merasa lebih tenang serta ikatan emosional makin dekat.

    Jika di Jakarta ada Mom n Jo, di Surabaya ada Little Bee yang memberi terapi pijatan dan hydmtherapy menggunakan air sebagai bagian dari terapi baby spa. Selama hydrothempy bayi akan dimasukkan ke dalam air dengan menggunakan pelampung di leher. Manu mi kepala terapi Fina Kurniasih, aktivitas ini akan menstimulasi bayi untuk menggerakkan kaki dan tangan yang turut mengasah kemandirian, rasa percaya diri, merangsang gerakan motorik, menghilangkan rasa (akut pada air, dan meningkatkan IQ.

    Agar bayi lebih maksimal menikmati aktivitas spa, para terapis akan membantu mereka menggerakkan badan dengan berbagai pijatan dan alunan musik klasik. "Alunan musik klasik dan kondisi air yang hangat membantu anak lebih tenang dan nyaman saat berada di dalam air." Stimulasi motorik Sementara itu manfaat pijatan padabayi sebagai bagian dari terapi baby spa juga diakui Maya Soviasari, Marketing Communication Manager Tamansari Royal Heritage Spa.

    Menurutnya, sebagai warisan budaya Jawa, pijatan pada bayi memberi manfaat selama bayi dalam masa pertumbuhan. Tidak hanya itu, tetapi juga spa bayi secara khusus akan menstimulasi motorik bayi, meningkatkan kualitas tidur, dan relaksasi. Untuk itulah Tamansari Royal Heritage Spa juga memberikan layanan spa untuk bayi meski semua dilakukan oleh terapis yang sudah berpengalaman dan khusus menangani pijat bayi. Tidak semua terapis bisa melakukan itu, maka ada terapis khusus yang menangani spa bayi."

    Manfaat spa bayi ini turut dirasakan Wina yang baru memiliki bayi laki-laki berusia 1 tahun lebih sebulan. Menurut karyawan sebuah perusahaan percetakan ini, baby spa yang diberikan pada putra semata wayangnya itu membuat si buah hati memiliki kualitas tidur lebih baik dari sebelumnya. "Kalau dahulu,dia suka rewet, tetapi setelah mendapat terapi spa bayi setiap malam jarang rewel dan tidurnya lebih pulas. Tentu itu bagus untuk perkembangan otak dan pertumbuhan dia," ujar Wina.

    Meski demikian Wina tidak sembarang memberi terapi spa bayi untuk si buah hati. Apalagi jika kondisi kesehatannya sedang tidak baik, Wina selalu mengonsultasikan kesehatan anaknya pada dokter sebelum spa bayi.
    "Bukan berarti kalau dia banyak rewel selalu diberi terapi spa bayi, karena bisa jadi karena dia sedang tidak enak badan atau kurang nyaman dengan tubuhnya, dan saya konsul-tasikan dulu ke dokter," ujarnya.

    Kebahagiaan dan kesehatan adalah hak setiap orang, bukan hanya milik orang dewasa saja, setidaknya bayi juga bisa bahagia dan memiliki tubuh sehat jika spa bayi ini terbukti baik untuk mereka

    Baby Spa secara garis besar terdiri dari 2 area, masing-masing Aqua dan Sandbox. Di area Aqua terdapat layanan Baby Swim, Baby Massage, dan Baby Hair Cut. ‘’Layanan baby swim diperuntukan untuk bayi usia 2 bulan ke atas. Ini bagus untuk memberikan stimulasi motorik kasar secara independent. Pasalnya, di dalam air bayi akan bergerak bebas dan melatih otot-ototnya secara aman karena lehernya di sangga pelampung khusus, Sementara, layanan pijat bayi sudah bisa dilakukan sejak bayi berusia 1 bulan. Area Sandbox digunakan untuk anak yang lebih besar, umumnya 2 tahun ke atas. Kawasan ini digunakan antara lain untuk perawatan kuku, dan rambut.




    72 gambarnya kegedeaan ngabisin page neh PANITIA
    Last edited by Anbu-LoCk~rBN; 17-09-10 at 18:08.

Page 5 of 5 FirstFirst 12345

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •