Page 5 of 19 FirstFirst 12345678915 ... LastLast
Results 61 to 75 of 281

Thread: Lubang Hitam

http://idgs.in/17806
  1. #61
    MimiHitam's Avatar
    Join Date
    Oct 2006
    Posts
    9,242
    Points
    16,524.95
    Thanks: 14 / 58 / 42

    Default

    planet? bukkannya bintang yang nyusut?

  2. Hot Ad
  3. #62
    bh_diansastro's Avatar
    Join Date
    Nov 2006
    Location
    -
    Posts
    404
    Points
    503.20
    Thanks: 0 / 5

    Default

    Quote Originally Posted by MimiHitam View Post
    planet? bukkannya bintang yang nyusut?
    wah Penganut Teori Pasang Surut Neh.

    Kalo PLanet adalah Bintang yang menyusut Gmn Jelasin Adanya tatasurnya kita ini??

    DIANSASTROholic

  4. #63
    krusszz's Avatar
    Join Date
    Dec 2006
    Location
    somewhere over the rainbow
    Posts
    3,255
    Points
    3,695.60
    Thanks: 0 / 0 / 0

    Default

    Quote Originally Posted by bh_diansastro View Post
    wah Penganut Teori Pasang Surut Neh.

    Kalo PLanet adalah Bintang yang menyusut Gmn Jelasin Adanya tatasurnya kita ini??
    bukan itu maksudnya mimi.....maksudnya dia itu bintang yg nyusut, bukan planet

    teori terbentuknya tata surya ga ada yg 100% diyakini benar

    yg paling terkenal sih big bang

  5. #64
    bh_diansastro's Avatar
    Join Date
    Nov 2006
    Location
    -
    Posts
    404
    Points
    503.20
    Thanks: 0 / 5

    Default

    Quote Originally Posted by krusszz View Post
    bukan itu maksudnya mimi.....maksudnya dia itu bintang yg nyusut, bukan planet

    teori terbentuknya tata surya ga ada yg 100% diyakini benar

    yg paling terkenal sih big bang
    duh masnya Bigbang itu Teori terbentuknya alam semesta

    Kalo tatasurya Gw lebih PErcaya sama teori Kebut Nebula

    DIANSASTROholic

  6. #65
    MimiHitam's Avatar
    Join Date
    Oct 2006
    Posts
    9,242
    Points
    16,524.95
    Thanks: 14 / 58 / 42

    Default

    OOT nih, malah bahas pembentukan tata surya

    yg gua penasaran d dalam black hole ada apa ya

  7. #66
    krusszz's Avatar
    Join Date
    Dec 2006
    Location
    somewhere over the rainbow
    Posts
    3,255
    Points
    3,695.60
    Thanks: 0 / 0 / 0

    Default

    Quote Originally Posted by bh_diansastro View Post
    duh masnya Bigbang itu Teori terbentuknya alam semesta

    Kalo tatasurya Gw lebih PErcaya sama teori Kebut Nebula
    sorry2 maksud gw alam semesta....maklum nulis jam 2 malem (alibi bgt ya )

    klo white hole gmn ya ?

    ktnya white hole itu justru menolak semua benda yg ada di dekatnya CMIIW

    trus cr kerja wormhole gmn sih....kan ktnya wormhole itu terbentuk dari 2 buah black hole yg saling berhubungan n kt nya benda yg masuk dari salah satu black hole bakal keluar di sisi lain...tp yg bikin gw bingung, gmn suatu benda bisa keluar dari sisi lain cos sifat dasar black hole yg menarik/bergravitasi tinggi

  8. #67
    kiwi's Avatar
    Join Date
    Dec 2006
    Posts
    362
    Points
    413.00
    Thanks: 0 / 0 / 0

    Default

    nih aku bagi2 teori :

    Black Hole
    Dengan gaya gravitasinya yang sangat spektakuler lubang hitam adalah monster kosmis tersendiri. Jurang ketiadaan ini bahkan melenyapkan cahaya.

    Lubang hitam (black hole) sering dihubungkan dengan hilangnya benda-benda kosmis bahkan wahana udara sekalipun, seperti hilangnya banyak pesawat di Segitiga Bermuda dan Samudera Atlantik Utara. Pro dan kontra pendapat mengenai hal ini memang tak pernah surut. Cerita seputar Segitiga Bermuda pun sepertinya tetap misterius, dan menjadi bahan tulisan yang tidak ada habis-habisnya.

    Dalam bahasan fenomena kali ini, baiklah kita tinjau sedikit apa sebenarnya lubang hitam atau yang disebut para ilmuwan sebagai singularitas dari bintang redup yang mengalami keruntuhan gravitasi (gravitational collapse) sempurna ini.

    Bila ditelusuri istilah lubang hitam, sebenarnya belum lah lama populer. Dua kata ini pertama kali diangkat oleh fisikawan AS bernama John Archibald Wheeler pada tahun 1968. Wheeler memberi nama demikian karena singularitas ini tak bisa dilihat. Mengapa demikian? Penyebabnya tidak lain karena cahaya tak bisa lepas dari kungkungan gravitasi singularitas yang maha dahsyat ini. Daerah di sekitar singularitas atau lazimnya disebut sebagai Horizon Peristiwa (radiusnya dihitung dengan rumus jari-jari Schwarzschild R = 2GM/C2 dimana G = 6,67 x 10-11 Nm2kg-2, M = kg massa lubang hitam, C = cepat rambat cahaya) menjadi gelap. Itulah sebabnya, wilayah ini disebut sebagai lubang hitam.

    Dengan tidak bisa lepasnya cahaya, serta merta sekilas kita bisa membayangkan sendiri kira-kira seberapa besar gaya gravitasi dari lubang hitam. Untuk mulai menghitungnya, ingatlah bahwa cepat rambat cahaya di alam mencapai 300 juta meter per detik. Lalu, apalah jadinya bila benar sebuah wahana buatan manusia tersedot ke dalam lubang hitam? Dalam hitungan sepersejuta detik saja, tentunya dapat dipastikan wahana tersebut sudah remuk menjadi bubur.

    Lebih dua ratus tahun silam, atau tepatnya pada tahun 1783. pemikiran akan adanya monster kosmis bersifat melenyapkan benda lainnya ini sebenarnya pernah dilontarkan oleh seorang pendeta bernama John Mitchell. Mitchell yang kala itu mencermati teori gravitasi Isaac Newton (1643-1727) berpendapat, bila bumi punya suatu kecepatan lepas dari Bumi 11 km per detik (sebuah benda yang dilemparkan tegak lurus ke atas baru akan terlepas dari pengaruh gravitasi bumi setelah melewati kecepatan ini), tentu ada planet atau bintang lain yang punya gravitasi lebih besar. Mitchell malah memperkirakan di kosmis terdapat suatu bintang dengan massa 500 kali matahari yang mampu mencegah lepasnya cahaya dari permukaannya sendiri.

    Lalu, bagaimana sebenarnya lubang hitam tercipta? Menurut teori evolusi bintang (lahir, berkembang, dan matinya bintang), buyut dari lubang hitam adalah sebuah bintang biru. Bintang biru merupakan julukan bagi deret kelompok bintang yang massanya lebih besar dari 1,4 kali massa matahari. Disebutkan para ahli fisika kosmis, ketika pembakaran hidrogen di bintang biru mulai usai (kira-kira memakan waktu 10 juta tahun), ia akan berkontraksi dan memuai menjadi bintang maha raksasa biru. Selanjutnya, ia akan mendingin menjadi bintang maha raksasa merah. Dalam fase inilah, akibat tarikan gravitasinya sendiri, bintang maha raksasa merah mengalami keruntuhan gravitasi menghasilkan ledakan dahsyat atau biasa disebut sebagai Supernova.

    Supernova ditandai dengan peningkatan kecerahan cahaya hingga miliaran kali cahaya bintang biasa kemudian melahirkan dua kelas bintang, yakni bintang netron dan lubang hitam. Bintang netron (disebut juga Pulsar atau bintang denyut) terjadi bila massa bintang runtuh lebih besar dari 1,4 kali, tapi lebih kecil dari tiga kali massa matahari. Sementara lubang hitam mempunyai massa bintang runtuh lebih dari tiga kali massa matahari. Materi pembentuk lubang hitam kemudian mengalami pengerutan yang tidak dapat mencegah apapun darinya. Bintang menjadi sangat mampat sampai menjadi suatu titik massa yang kerapatannya tidak terhingga, yang disebut singularitas tadi.

    Di dalam kaidah fisika, besaran gaya gravitasi berbanding terbalik dengan kuadrat jarak atau dirumuskan F µ 1/r2. Dari formula inilah kita bisa memahami mengapa lubang hitam mempunyai gaya gravitasi yang maha dahsyat. Dengan nilai r yang makin kecil atau mendekati nol, gaya gravitasi akan menjadi tak hingga besarnya.

    Para ilmuwan menghitung, seandainya benda bermassa seperti bumi kita ini akan menjadi lubang hitam, agar gravitasinya mampu mencegah cahaya keluar, maka benda itu harus dimampatkan menjadi bola berjari-jari 1 cm!

    Cakram gas
    Dengan sifatnya yang tidak bisa dilihat, pertanyaan kemudian adalah bagaimana mendeteksi adanya suatu lubang hitam? Kesempatan yang paling baik untuk mendeteksinya, diakui para ahli, adalah bila ia merupakan bintang ganda (dua bintang yang berevolusi dan saling mengelilingi). Lubang hitam akan menyedot semua materi dan gas-gas hasil ledakan termonuklir bintang di sekitarnya. Dari gesekan internal, gas-gas yang tersedot itu akan menjadi sangat panas (hingga 2 juta derajat!) dan memancarkan sinar-X. Dari sinar-X inilah para ahli memulai langkah untuk menjejak lubang hitam.

    Pada 12 Desember 1970, AS meluncurkan satelit astronomi kecil (Small Astronomical Satellite *SAS) pendeteksi sinar-X di kosmis bernama Uhuru dari lepas pantai Kenya. Dari hasil pengamatannya didapatkan bahwa sebuah bintang maha raksasa biru, yakni HDE226868 yang terletak dalam konstelasi Cygnus (8.000 tahun cahaya dari bumi) mempunyai pasangan bintang Cygnus X-1, yang tidak dapat dideteksi secara langsung.

    Cygnus X-1 menampakkan orbitnya berupa gas-gas hasil ledakan termonuklir HDE226868 yang bergerak membentuk sebuah cakram. Cygnus X-1 diperhitungkan berukuran lebih kecil dari Bumi, tapi memiliki massa enam kali lebih besar dari massa matahari. Bintang redup ini telah diyakini para ilmuwan sebagai lubang hitam. Selain Cygnus X-1, Uhuru juga mendapatkan sumber sinar-X kosmis, yakni Cygnus X-3 dalam konstelasi Centaurus dan Lupus X-1 dalam konstelasi bintang Lupus. Dua yang disebut terakhir belum dipastikan sebagai lubang hitam, termasuk 339 sumber sinar-X lainnya yang dideteksi selama 2,5 tahun masa operasi Uhuru.

    Eksplorasi sumber sinar-X di kosmis masih dilanjutkan oleh satelit HEAO (High Energy Astronomical Observatory) atau Einstein Observatory tahun 1978. Satelit ini menemukan bintang ganda yang lain dalam konstelasi Circinus, yakni Circinus X-1 serta V861 Scorpii dan GX339-4 dalam konstelasi bintang Scorpius.

    Tahun 1999, dengan biaya 2,8 milyar dollar, AS masih meluncurkan teleskop Chandra, guna menyingkap misteri lubang hitam. The Chandra X-ray Observatory sepanjang 45 kaki milik NASA ini telah berhasil membuat ratusan gambar resolusi tinggi dan menangkap adanya lompatan-lompatan sinar-X dari pusat galaksi Bima Sakti berjarak 24.000 tahun cahaya dari Bumi. Mencengangkan, karena bila memang benar demikian (lompatan sinar-X itu) menunjukkan adanya sebuah lubang hitam di jantung Bima Sakti, maka teori Albert Einstein kembali benar. Ia menyatakan, bahwa di jantung setiap galaksi terdapat lubang hitam!

    "Dugaan semacam itu sungguh sangat dekat dengan kenyataan," kata Frederick Baganoff yang memimpin penelitian, September 2001, kepada Reuters di Washington. Para ilmuwan pun mulai melebarkan pencarian terhadap putaran gas di sekitar tepi-tepi jurang ketiadaan ini, layaknya mencari pusaran air.

    Pencarian lubang hitam dan kebenaran teori-teori yang mendukungnya memang masih terus dilakukan para ahli, seiring makin majunya teknologi dan ilmu pengetahuan. Pertanyaan kemudian, bila lubang hitam bertebaran di kosmis, apakah nanti pada saat kiamat, monster ini pula yang akan melenyapkan benda-benda jagat raya?

    (informasi dari beberapa sumber)
    Last edited by kiwi; 19-12-07 at 02:18.

  9. #68

    Join Date
    Apr 2008
    Posts
    1
    Points
    1.10
    Thanks: 0 / 0 / 0

    Default

    yupe.. saya setuju banget dengan saudara kiwi.
    jd ttg bbrp mslh td:
    1. Lubang hitam.. meski di katakan "lubang" bukan berarti benar2 ada lubang. sedangkan wormhole hanya rekaan orang semata berdasarkan sci-fi atao berdasarkan hukum kekekalan energi. karena tdk bs menjelaskan kemana energi yg di hancur kan n berubah ke bentuk apa. maka org mereka2 adanya wormhole yg dgn begitu berarti ada dunia laen di balik wormhole
    2. Bumi sebagai planet tdklah mungkin bs jadi white dwarf(bintang kerdil putih) atao bintang neutron ataopun black hole. Mengapa? karena di dalam bumi tidak terjadi reaksi fusi nuklir. pembakaran hidrogen atao helium. itu hanya terjadi pada bintang. bukan planet.
    Matahari jika pada saatnya mati hanya akan menjadi white dwarf dan neutron star. ga kan jadi blackhole. so relax.. kiamat masih lama. kiamat hanya akan cepat terjadi akibat campur tangan manusia sendiri terhadap nature n universe. so blame no one but ourselves!
    3. Teori kabut nebula adalah bagian dr teori big bang itu sendiri.

    Hmm.. apa lagi ya? yah saya rasa cuman segitu yg kepikiran ingin saya sampaikan utk membantu rasa penasaran saudara2. drpd hanya bertanya2.. mengapa tidak mulai mencoba mencari sendiri jawabannya dgn banyak membaca n meneliti?

  10. #69
    ID.KingHades's Avatar
    Join Date
    Apr 2008
    Location
    DKI Jakarta , Jakarta Utara
    Posts
    153
    Points
    254.60
    Thanks: 0 / 0 / 0

    Default

    Black Hole.

    Menurut saya, black hole adalah sebuah kumpulan zat-zat pembentuk planet yang didalamnya terdapat kumpulan energi gravitasi dan zat anti-materi pasif.

    Menurut saya lagi, jika kita masuk ke dalam black hole, kita akan tertekan oleh energi gravitasi yang ada di dalamnya, kalau digambarkan +- sama dengan kita menyelam sampe kedalaman 10.000 meter mendekati dasar laut tanpa menggunakan kapal selam, akan tetapi gaya kompresi di black hole kemungkinan 1000x lebih kuat dari itu, jadi kalau kita mau masuk black hole tanpa alat / sarana yang bisa bergerak dalam sepersekian mikrodetik tahun cahaya, kita harus menggunakan bahan metal yang dapat menahan ledakan 10 fusi nuklir bersamaan. ( mungkin orihalcum ya ? )

    Saya amat menyenangi bidang astronomi, jadi kesimpulan yang saya buat diatas merupakan inti dari semua yang saya baca + penambahan terapan logika.

    :thank_you2:

  11. #70
    MimiHitam's Avatar
    Join Date
    Oct 2006
    Posts
    9,242
    Points
    16,524.95
    Thanks: 14 / 58 / 42

    Default



    Gambar black hole

  12. #71
    Homicide's Avatar
    Join Date
    Oct 2006
    Location
    Jakarta Selatan --`
    Posts
    203
    Points
    249.90
    Thanks: 0 / 0 / 0

    Default

    Quote Originally Posted by Mr_Random View Post
    1. Rotasi terhadap poros bumi sendiri
    2. Revolusi terhadap matahari bersama planet2 tata surya yg lain
    3. Revolusi terhadap pusat galaksi yang tak lain adalah blackhole bersama seluruh isi galaksi bimasakti ini.


    4. Ternyata Black Hole juga berotasi kepada 1 benda lagi yang lebih besar....


    hehehe gak deng.... but, who knows???

  13. #72
    krusszz's Avatar
    Join Date
    Dec 2006
    Location
    somewhere over the rainbow
    Posts
    3,255
    Points
    3,695.60
    Thanks: 0 / 0 / 0

    Default

    buset, black hole berotasi bisa di analogikan peyedot debu yg lagi nyedot2

    alah alah, jadi gajelas

  14. #73

    Join Date
    Feb 2008
    Location
    2 StEpS From You @_@"
    Posts
    881
    Points
    1,109.60
    Thanks: 2 / 0 / 0

    Default

    NGmg2 letak bLACK holde di mana yah???

    gw py pertanyaan neh....................

    kalo black hole myerap ato nyedot~nyedot gt KAn byk bgt itu di cerna ato dia malah membesar?
    Soalny gawat kalo jadi besar etr Bumi di telan >.<
    With SworD , Spear , BOw........

    I Will Kill Your BorRing

  15. #74
    Menara_Jakarta's Avatar
    Join Date
    Aug 2008
    Location
    Menara Jakarta
    Posts
    1,890
    Points
    2,829.71
    Thanks: 0 / 7 / 7

    Default

    Black Hole

    Dengan Gaya gravitasinya yang sangat spektakuler lubang hitam adalah monster kosmis tersendiri. Jurang ketiadaan ini bahkan melenyapkan cahaya.

    Lubang hitam (black hole) sering dihubungkan dengan hilangnya benda-benda kosmis bahkan wahana udara sekalipun, seperti pernah disinggung dalam rubrik ini berkaitan dengan hilangnya banyak pesawat di Segitiga Bermuda dan Samudera Atlantik Utara. Pro dan kontra pendapat mengenai hal ini memang tak pernah surut. Cerita seputar Segitiga Bermuda pun sepertinya tetap misterius, dan menjadi bahan tulisan yang tidak ada habis-habisnya.

    Dalam bahasan fenomena kali ini, baiklah kita tinjau sedikit apa sebenarnya lubang hitam atau yang disebut para ilmuwan sebagai singularitas dari bintang redup yang mengalami keruntuhan gravitasi (gravitational collapse) sempurna ini.

    black-hole

    Bila ditelusuri istilah lubang hitam, sebenarnya belum lah lama populer. Dua kata ini pertama kali diangkat oleh fisikawan AS bernama John Archibald Wheeler pada tahun 1968. Wheeler memberi nama demikian karena singularitas ini tak bisa dilihat. Mengapa demikian? Penyebabnya tidak lain karena cahaya tak bisa lepas dari kungkungan gravitasi singularitas yang maha dahsyat ini. Daerah di sekitar singularitas atau lazimnya disebut sebagai Horizon Peristiwa (radiusnya dihitung dengan rumus jari-jari Schwarzschild R = 2GM/C2 dimana G = 6,67 x 10-11 Nm2kg-2, M = kg massa lubang hitam, C = cepat rambat cahaya) menjadi gelap. Itulah sebabnya, wilayah ini disebut sebagai lubang hitam.

    Dengan tidak bisa lepasnya cahaya, serta merta sekilas kita bisa membayangkan sendiri kira-kira seberapa besar gaya gravitasi dari lubang hitam. Untuk mulai menghitungnya, ingatlah bahwa cepat rambat cahaya di alam mencapai 300 juta meter per detik. Masya Allah. Lalu, apalah jadinya bila benar sebuah wahana buatan manusia tersedot ke dalam lubang hitam? Dalam hitungan sepersejuta detik saja, tentunya dapat dipastikan wahana tersebut sudah remuk menjadi bubur.

    Lebih dua ratus tahun silam, atau tepatnya pada tahun 1783. pemikiran akan adanya monster kosmis bersifat melenyapkan benda lainnya ini sebenarnya pernah dilontarkan oleh seorang pendeta bernama John Mitchell. Mitchell yang kala itu mencermati teori gravitasi Isaac Newton (1643-1727) berpendapat, bila bumi punya suatu kecepatan lepas dari Bumi 11 km per detik (sebuah benda yang dilemparkan tegak lurus ke atas baru akan terlepas dari pengaruh gravitasi bumi setelah melewati kecepatan ini), tentu ada planet atau bintang lain yang punya gravitasi lebih besar. Mitchell malah memperkirakan di kosmis terdapat suatu bintang dengan massa 500 kali matahari yang mampu mencegah lepasnya cahaya dari permukaannya sendiri.

    Lalu, bagaimana sebenarnya lubang hitam tercipta? Menurut teori evolusi bintang (lahir, berkembang, dan matinya bintang), buyut dari lubang hitam adalah sebuah bintang biru. Bintang biru merupakan julukan bagi deret kelompok bintang yang massanya lebih besar dari 1,4 kali massa matahari. Disebutkan para ahli fisika kosmis, ketika pembakaran hidrogen di bintang biru mulai usai (kira-kira memakan waktu 10 juta tahun), ia akan berkontraksi dan memuai menjadi bintang maha raksasa biru. Selanjutnya, ia akan mendingin menjadi bintang maha raksasa merah. Dalam fase inilah, akibat tarikan gravitasinya sendiri, bintang maha raksasa merah mengalami keruntuhan gravitasi menghasilkan ledakan dahsyat atau biasa disebut sebagai Supernova.

    Supernova ditandai dengan peningkatan kecerahan cahaya hingga miliaran kali cahaya bintang biasa kemudian melahirkan dua kelas bintang, yakni bintang netron dan lubang hitam. Bintang netron (disebut juga Pulsar atau bintang denyut) terjadi bila massa bintang runtuh lebih besar dari 1,4 kali, tapi lebih kecil dari tiga kali massa matahari. Sementara lubang hitam mempunyai massa bintang runtuh lebih dari tiga kali massa matahari. Materi pembentuk lubang hitam kemudian mengalami pengerutan yang tidak dapat mencegah apapun darinya. Bintang menjadi sangat mampat sampai menjadi suatu titik massa yang kerapatannya tidak terhingga, yang disebut singularitas tadi.

    Di dalam kaidah fisika, besaran gaya gravitasi berbanding terbalik dengan kuadrat jarak atau dirumuskan F µ 1/r2. Dari formula inilah kita bisa memahami mengapa lubang hitam mempunyai gaya gravitasi yang maha dahsyat. Dengan nilai r yang makin kecil atau mendekati nol, gaya gravitasi akan menjadi tak hingga besarnya.

    Para ilmuwan menghitung, seandainya benda bermassa seperti bumi kita ini akan menjadi lubang hitam, agar gravitasinya mampu mencegah cahaya keluar, maka benda itu harus dimampatkan menjadi bola berjari-jari 1 cm! (Allahu Akbar, hanya Tuhan lah yang bisa melakukannya).

    Cakram gas

    Dengan sifatnya yang tidak bisa dilihat, pertanyaan kemudian adalah bagaimana mendeteksi adanya suatu lubang hitam? Kesempatan yang paling baik untuk mendeteksinya, diakui para ahli, adalah bila ia merupakan bintang ganda (dua bintang yang berevolusi dan saling mengelilingi). Lubang hitam akan menyedot semua materi dan gas-gas hasil ledakan termonuklir bintang di sekitarnya. Dari gesekan internal, gas-gas yang tersedot itu akan menjadi sangat panas (hingga 2 juta derajat!) dan memancarkan sinar-X. Dari sinar-X inilah para ahli memulai langkah untuk menjejak lubang hitam.

    Pada 12 Desember 1970, AS meluncurkan satelit astronomi kecil (Small Astronomical Satellite SAS) pendeteksi sinar-X di kosmis bernama Uhuru dari lepas pantai Kenya. Dari hasil pengamatannya didapatkan bahwa sebuah bintang maha raksasa biru, yakni HDE226868 yang terletak dalam konstelasi Cygnus (8.000 tahun cahaya dari bumi) mempunyai pasangan bintang Cygnus X-1, yang tidak dapat dideteksi secara langsung.

    Cygnus X-1 menampakkan orbitnya berupa gas-gas hasil ledakan termonuklir HDE226868 yang bergerak membentuk sebuah cakram. Cygnus X-1 diperhitungkan berukuran lebih kecil dari Bumi, tapi memiliki massa enam kali lebih besar dari massa matahari. Bintang redup ini telah diyakini para ilmuwan sebagai lubang hitam. Selain Cygnus X-1, Uhuru juga mendapatkan sumber sinar-X kosmis, yakni Cygnus X-3 dalam konstelasi Centaurus dan Lupus X-1 dalam konstelasi bintang Lupus. Dua yang disebut terakhir belum dipastikan sebagai lubang hitam, termasuk 339 sumber sinar-X lainnya yang dideteksi selama 2,5 tahun masa operasi Uhuru.

    Eksplorasi sumber sinar-X di kosmis masih dilanjutkan oleh satelit HEAO (High Energy Astronomical Observatory) atau Einstein Observatory tahun 1978. Satelit ini menemukan bintang ganda yang lain dalam konstelasi Circinus, yakni Circinus X-1 serta V861 Scorpii dan GX339-4 dalam konstelasi bintang Scorpius.

    Tahun 1999, dengan biaya 2,8 milyar dollar, AS masih meluncurkan teleskop Chandra, guna menyingkap misteri lubang hitam. The Chandra X-ray Observatory sepanjang 45 kaki milik NASA ini telah berhasil membuat ratusan gambar resolusi tinggi dan menangkap adanya lompatan-lompatan sinar-X dari pusat galaksi Bima Sakti berjarak 24.000 tahun cahaya dari Bumi. Mencengangkan, karena bila memang benar demikian (lompatan sinar-X itu) menunjukkan adanya sebuah lubang hitam di jantung Bima Sakti, maka teori Albert Einstein kembali benar. Ia menyatakan, bahwa di jantung setiap galaksi terdapat lubang hitam!

    “Dugaan semacam itu sungguh sangat dekat dengan kenyataan,” kata Frederick Baganoff yang memimpin penelitian, September 2001, kepada Reuters di Washington. Para ilmuwan pun mulai melebarkan pencarian terhadap putaran gas di sekitar tepi-tepi jurang ketiadaan ini, layaknya mencari pusaran air.
    Pencarian lubang hitam dan kebenaran teori-teori yang mendukungnya memang masih terus dilakukan para ahli, seiring makin majunya teknologi dan ilmu pengetahuan. Pertanyaan kemudian, bila lubang hitam bertebaran di kosmis, apakah nanti pada saat kiamat, monster ini pula yang akan melenyapkan benda-benda jagat raya?

    Quote of the week:

    "Indonesia is on the move, get on board." — Forbes Asia
    "The optimist proclaims that we live in the best of all possible worlds; and the pessimist fears this is true." James Branch Cabell

    Vote for Komodo National Park:
    http://www.new7wonders.com/nature/en/vote_on_nominees/

  16. #75
    CaiCaipOO
    Guest

    Cool Stars & Black Holes

    Bintang

    Bintang merupakan benda langit yang memancarkan cahaya. Terdapat bintang semu dan bintang nyata. Bintang semu adalah bintang yang tidak menghasilkan cahaya sendiri, tetapi memantulkan cahaya yang diterima dari bintang lain. Bintang nyata adalah bintang yang menghasilkan cahaya sendiri. Secara umum sebutan bintang adalah objek luar angkasa yang menghasilkan cahaya sendiri (bintang nyata).



    Menurut ilmu astronomi, definisi bintang adalah:
    “ Semua benda masif (bermassa antara 0,08 hingga 200 massa matahari) yang sedang dan pernah melangsungkan pembangkitan energi melalui reaksi fusi nuklir.”

    Oleh sebab itu bintang katai putih dan bintang netron yang sudah tidak memancarkan cahaya atau energi tetap disebut sebagai bintang. Bintang terdekat dengan Bumi adalah Matahari pada jarak sekitar 149,680,000 kilometer, diikuti oleh Proxima Centauri dalam rasi bintang Centaurus berjarak sekitar empat tahun cahaya.

    Bintang-bintang telah menjadi bagian dari setiap kebudayaan. Bintang-bintang digunakan dalam praktek-praktek keagamaan, dalam navigasi, dan bercocok tanam. Kalender Gregorian, yang digunakan hampir di semua bagian dunia, adalah kalender matahari, mendasarkan diri pada posisi Bumi relatif terhadap bintang terdekat, Matahari.

    Astronom-astronom awal seperti Tycho Brahe berhasil mengenali ‘bintang-bintang baru’ di langit (kemudian dinamakan novae) menunjukkan bahwa langit tidaklah kekal. Pada 1584 Giordano Bruno mengusulkan bahwa bintang-bintang sebenarnya adalah matahari-matahari lain, dan mungkin saja memiliki planet-planet seperti bumi di dalam orbitnya,ide yang telah diusulkan sebelumnya oleh filsuf-filsuf Yunani kuno seperti Democritus dan Epicurus.Pada abad berikutnya, ide bahwa bintang adalah matahari yang jauh mencapai konsensus di antara para astronom. Untuk menjelaskan mengapa bintang-bintang ini tidak memberikan tarikan gravitasi pada tata surya, Isaac Newton mengusulkan bahwa bintang-bintang terdistribusi secara merata di seluruh langit, sebuah ide yang berasal dari teolog Richard Bentley.

    Astronom Italia Geminiano Montanari merekam adanya perubahan luminositas pada bintang Algol pada 1667. Edmond Halley menerbitkan pengukuran pertama gerak diri dari sepasang bintang “tetap” dekat, memperlihatkan bahwa mereka berubah posisi dari sejak pengukuran yang dilakukan Ptolemaeus dan Hipparchus. Pengukuran langsung jarak bintang 61 Cygni dilakukan pada 1838 oleh Friedrich Bessel menggunakan teknik paralaks.

    William Herschel adalah astronom pertama yang mencoba menentukan distribusi bintang di langit. Selama 1780an ia melakukan pencacahan di sekitar 600 daerah langit berbeda. Ia kemudian menyimpulkan bahwa jumlah bintang bertambah secara tetap ke suatu arah langit, yakni pusat galaksi Bima Sakti. Putranya John Herschel mengulangi pekerjaan yang sama di hemisfer langit sebelah selatan dan menemukan hasil yang sama.Selain itu William Herschel juga menemukan bahwa beberapa pasangan bintang bukanlah bintang-bintang yang secara kebetulan berada dalam satu arah garis pandang, melainkan mereka memang secara fisik berpasangan membentuk sistem bintang ganda.

    Radiasi

    Energi yang dihasilkan bintang, sebagai hasil samping dari reaksi fusi nuklir, dipancarkan ke luar angkasa sebagai radiasi elektromagnetik dan radiasi partikel. Radiasi partikel yang dipancarkan bintang dimanifestasikan sebagai angin bintang (yang berwujud sebagai pancaran tetap partikel-partikel bermuatan listrik seperti proton bebas, partikel alpha dan partikel beta yang berasal dari bagian terluar bintang) dan pancaran tetap neutrino yang berasal dari inti bintang.

    Hampir semua informasi yang kita miliki mengenai bintang yang lebih jauh dari Matahari diturunkan dari pengamatan radiasi elektromagnetiknya, yang terentang dari panjang gelombang radio hingga sinar gamma. Namun tidak semua rentang panjang gelombang tersebut dapat diterima oleh teleskop landas Bumi. Hanya gelombang radio dan gelombang cahaya yang dapat diteruskan oleh atmosfer Bumi dan menciptakan ‘jendela radio’ dan ‘jendela optik’. Teleskop-teleskop luar angkasa telah diluncurkan untuk mengamati bintang-bintang pada panjang gelombang lain.

    Banyaknya radiasi elektromagnetik yang dipancarkan oleh bintang dipengaruhi terutama oleh luas permukaan, suhu dan komposisi kimia dari bagian luar (fotosfer) bintang tersebut. Pada akhirnya kita dapat menduga kondisi di bagian dalam bintang, karena apa yang terjadi di permukaan pastilah sangat dipengaruhi oleh bagian yang lebih dalam.

    Dengan menelaah spektrum bintang, astronom dapat menentukan temperatur permukaan, gravitasi permukaan, metalisitas, dan kecepatan rotasi dari sebuah bintang. Jika jarak bisa ditentukan, misal dengan metode paralaks, maka luminositas bintang dapat diturunkan. Massa, radius, gravitasi permukaan, dan periode rotasi kemudian dapat diperkirakan dari pemodelan. Massa bintang dapat juga diukur secara langsung untuk bintang-bintang yang berada dalam sistem bintang ganda atau melalui metode mikrolensing. Pada akhirnya astronom dapat memperkirakan umur sebuah bintang dari parameter-parameter di atas

    Karena jaraknya yang sangat jauh, semua bintang (kecuali Matahari) hanya tampak sebagai titik saja yang berkelap-kelip karena efek turbulensi atmosfer Bumi. Diameter sudut bintang bernilai sangat kecil ketika diamati menggunakan teleskop optik landas bumi, hingga diperlukan teleskop interferometer untuk dapat memperoleh citranya. Bintang dengan ukuran diameter sudut terbesar setelah Matahari adalah R Doradus, dengan 0,057 detik busur.
    Sebuah katai putih yang sedang mengorbit Sirius (konsep artis). citra NASA.

    Telah lama dikira bahwa kebanyakan bintang berada pada sistem bintang ganda atau sistem multi bintang. Kenyataan ini hanya benar untuk bintang-bintang masif kelas O dan B, dimana 80% populasinya dipercaya berada dalam suatu sistem bintang ganda atau pun multi bintang. Semakin redup bintang, semakin besar kemungkinannya dijumpai sebagai sistem tunggal. Dijumpai hanya 25% populasi katai merah yang berada dalam sebuah sistem bintang ganda atau sistem multi bintang. Karena 85% populasi bintang di galaksi Bimasakti adalah katai merah, maka tampaknya kebanyakan bintang di dalam Bimasakti berada pada sistem bintang tunggal.

    Sistem yang lebih besar yang disebut gugus bintang juga dijumpai. Bintang-bintang tidak tersebar secara merata mengisi seluruh ruang alam semesta, tetapi terkelompokkan ke dalam galaksi-galaksi bersama-sama dengan gas antarbintang dan debu. Sebuah galasi tipikal mengandung ratusan miliar bintang, dan terdapat lebih dari 100 miliar galaksi di seluruh alam semesta teramati.

    Astronom memperkirakan terdapat 70 sekstiliun (7×1022) bintang di seluruh alam semesta yang teramati[8]. Ini berarti 70 000 000 000 000 000 000 000 bintang, atau 230 miliar kali banyaknya bintang di galaksi Bimasakti yang berjumlah sekitar 300 miliar.

    Bintang terdekat dengan Matahari adalah Proxima Centauri, berjarak 39.9 triliun (1012) kilometer, atau 4.2 tahun cahaya. Cahaya dari Proxima Centauri memakan waktu 4.2 tahun untuk mencapai Bumi. Jarak ini adalah jarak antar bintang tipikal di dalam sebuah piringan galaksi. Bintang-bintang dapat berada pada jarak yang lebih dekat satu sama lain di daerah sekitar pusat galasi dan di dalam gugus bola, atau pada jarak yang lebih jauh di halo galaksi.

    Karena kerapatan yang rendah di dalam sebuah galaksi, tumbukan antar bintang jarang terjadi. Namun di daerah yang sangat padat seperti di inti sebuah gugus bintang atau lingkungan sekitar pusat galaksi, tumbukan dapat sering terjadi. Tumbukan seperti ini dapat menghasilkan pengembara-pengembara biru yaitu sebuah bintang abnormal hasil penggabungan yang memiliki temperatur permukaan yang lebih tinggi dibandingkan bintang deret utama lainnya di sebuah gugus bintang dengan luminositas yang sama. Istilah pengembara merujuk pada jejak evolusi yang berbeda dengan bintang normal lainnya pada diagram Hertzsprung-Russel.

    Evolusi

    Struktur, evolusi, dan nasib akhir sebuah bintang sangat dipengaruhi oleh massanya. Selain itu, komposisi kimia juga ikut mengambil peran dalam skala yang lebih kecil.

    Terbentuknya bintang

    Bintang terbentuk di dalam awan molekul; yaitu sebuah daerah medium antarbintang yang luas dengan kerapatan yang tinggi (meskipun masih kurang rapat jika dibandingkan dengan sebuah vacuum chamber yang ada di bumi). Awan ini kebanyakan terdiri dari hidrogen dengan sekitar 23–28% helium dan beberapa persen elemen berat. Komposisi elemen dalam awan ini tidak banyak berubah sejak peristiwa nukleosintesis Big Bang pada saat awal alam semesta.

    Gravitasi mengambil peranan sangat penting dalam proses pembentukan bintang. Pembentukan bintang dimulai dengan ketidakstabilan gravitasi di dalam awan molekul yang dapat memiliki massa ribuan kali matahari. Ketidakstabilan ini seringkali dipicu oleh gelombang kejut dari supernova atau tumbukan antara dua galaksi. Sekali sebuah wilayah mencapai kerapatan materi yang cukup memenuhi syarat terjadinya instabilitas Jeans, awan tersebut mulai runtuh di bawah gaya gravitasinya sendiri.

    Berdasarkan syarat instabilitas Jeans, bintang tidak terbentuk sendiri-sendiri, melainkan dalam kelompok yang berasal dari suatu keruntuhan di suatu awan molekul yang besar, kemudian terpecah menjadi konglomerasi individual. Hal ini didukung oleh pengamatan dimana banyak bintang berusia sama tergabung dalam gugus atau asosiasi bintang.

    Begitu awan runtuh, akan terjadi konglomerasi individual dari debu dan gas yang padat yang disebut sebagai globula Bok. Globula Bok ini dapat memiliki massa hingga 50 kali Matahari. Runtuhnya globula membuat bertambahnya kerapatan. Pada proses ini energi gravitasi diubah menjadi energi panas sehingga temperatur meningkat. Ketika awan protobintang ini mencapai kesetimbangan hidrostatik, sebuah protobintang akan terbentuk di intinya. Bintang pra deret utama ini seringkali dikelilingi oleh piringan protoplanet. Pengerutan atau keruntuhan awan molekul ini memakan waktu hingga puluhan juta tahun. Ketika peningkatan temperatur di inti protobintang mencapai kisaran 10 juta kelvin, hidrogen di inti 'terbakar' menjadi helium dalam suatu reaksi termonuklir. Reaksi nuklir di dalam inti bintang menyuplai cukup energi untuk mempertahankan tekanan di pusat sehingga proses pengerutan berhenti. Protobintang kini memulai kehidupan baru sebagai bintang deret utama.

    Deret Utama

    Bintang menghabiskan sekitar 90% umurnya untuk membakar hidrogen dalam reaksi fusi yang menghasilkan helium dengan temperatur dan tekanan yang sangat tinggi di intinya. Pada fase ini bintang dikatakan berada dalam deret utama dan disebut sebagai bintang katai.

    Akhir sebuah bintang

    Ketika kandungan hidrogen di teras bintang habis, teras bintang mengecil dan membebaskan banyak panas dan memanaskan lapisan luar bintang. Lapisan luar bintang yang masih banyak hidrogen mengembang dan bertukar warna merah dan disebut bintang raksaksa merah yang dapat mencapai 100 kali ukuran matahari sebelum membentuk bintang kerdil putih. Sekiranya bintang tersebut berukuran lebih besar dari matahari, bintang tersebut akan membentuk superraksaksa merah. Superraksaksa merah ini kemudiannya membentuk Nova atau Supernova dan kemudiannya membentuk bintang neutron atau Lubang hitam.




    Black Hole


    Black Hole (Lubang Hitam)adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga 8kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata "hitam". Istilah "lubang hitam" telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.



    * Asal Mula Lubang Hitam

    Lubang Hitam tercipta ketika suatu obyek tidak dapat bertahan dari kekuatan tekanan gaya gravitasinya sendiri. Banyak obyek (termasuk matahari dan bumi) tidak akan pernah menjadi lubang hitam. Tekanan gravitasi pada matahari dan bumi tidak mencukupi untuk melampaui kekuatan atom dan nuklir dalam dirinya yang sifatnya melawan tekanan gravitasi. Tetapi sebaliknya untuk obyek yang bermassa sangat besar, tekanan gravitasi-lah yang menang.

    * Pertumbuhannya

    Massa dari lubang hitam terus bertambah dengan cara menangkap semua materi didekatnya. Semua materi tidak bisa lari dari jeratan lubang hitam jika melintas terlalu dekat. Jadi obyek yang tidak bisa menjaga jarak yang aman dari lubang hitam akan tersedot. Berlainan dengan reputasi yang disandangnya saat ini yang menyatakan bahwa lubang hitam dapat menyedot apa saja disekitarnya, lubang hitam tidak dapat menyedot material yang jaraknya sangat jauh dari dirinya. dia hanya bisa menarik materi yang lewat sangat dekat dengannya. Contoh : bayangkan matahari kita menjadi lubang hitam dengan massa yang sama. Kegelapan akan menyelimuti bumi dikarenakan tidak ada pancaran cahaya dari lubang hitam, tetapi bumi akan tetap mengelilingi lubang hitam itu dengan jarak dan kecepatan yang sama dengan saat ini dan tidak tersedot masuk kedalamnya. Bahaya akan mengancam hanya jika bumi kita berjarak 10 mil dari lubang hitam, dimana hal ini masih jauh dari kenyataan bahwa bumi berjarak 93 juta mil dari matahari. Lubang hitam juga dapat bertambah massanya dengan cara bertubrukan dengan lubang hitam yang lain sehingga menjadi satu lubang hitam yang lebih besar.

    Apa yang terjadi jika dua galaksi bergabung?



    Bagaimana dengan lubang hitam supermasif yang ada di pusat kedua galaksi tersebut? Bayangkan bagaimana gaya yang akan dilepaskan saat dua lubang hitam dengan massa ratusan juta massa Matahari bergabung. Kejadian ini bisa saja diamati dari Bumi, jika kita memang tahu apa yang sednag kita cari.

    Sebagian besar Galaksi di Alam Semesta ini memiliki lubang hitam supermasif. Beberapa lubang hitam yang paling besar bisa memiliki massa ratusan juta bahkan miliaran massa Matahari. Dan area disektar lubang hitam tersebut akan menjadi sangat ekstrim. Bahkan para ilmuwan juga memprediksikan dengan teori relativitas Einstein kalau lubang hitam tersebut berputar dengan laju maksimum.



    Saat dua galaksi bergabung, lubang hitam supermasif yang ada di kedua galaksi itu tentu akan berinteraksi. Bisa saja interaksi tersebut melalui sebuah tabrakan, atau mungkin dari gerak spiral ke dalam sampai mereka mengalami penyatuan (merger). Menarik bukan?

    Berdasarkan simulasi yang dilakukan G. A Shields dari University of Texas, Austin dan E. W. Banning dari Yale University, hasil penyatuan tersebut seringnya merupakan gerakan mundur yang sangat kuat. Dalam proses penggabungan ini, lubang hitam tersebut bukannya mengalami proses penggabungan yang manis, namun gaya yang muncul sangat ekstrim sehingga salah satu lubang hitam akan terdorong keluar dengan kecepatan yang sangat besar.

    Dorongan maksimum terjadi pada kedua lubang hitam saat mereka berputar dengan arah yang berbeda, namun keduanya berada pada bidang orbit yang sama. Dalam fraksi hanya satu detik, satu lubang hitam sudah mendapat dorongan yang cukup untuk keluar dari galaksi yang baru saja bersatu dan tak pernah kembali lagi. Saat satu lubang hitam mengalami dorongan, yang lainnya akan menerima energi yang amat besar, terinjeksi ke dalam piringan gas dan debu disekitarnya. Piringan akresi akan bersinar dengan flare sinar X tipis dan baru akan berakhir beberapa ribu tahun.

    Nah, meskipun kejadian merger atau penggabungan lubang hitam supermaif itu sangat jarang, kecerlangan yang ditimbulkannya akan berakhir dalam waktu yang cukup lama sehingga bisa kita deteksi sejumlah kejadian yang pernah terjadi. Menurut para peneliti, ada sekitar 100 gerakan mundur yang tiba-tiba yang terjadi dalam 5 miliar tahun cahaya dari Bumi.

    Sumber : ArXiV, Universe Today.


Page 5 of 19 FirstFirst 12345678915 ... LastLast

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •